G BF Lo ATRT anEn

i Real-Time Rendering Tricks and Techniques in DirectX
REAL-TIME
RENMDERING

WOHRECTX by Kelly Dempski

Premier Press © 2002 (821 pages)

® CD Content

<*Table of Contents [*Back Cover [*Comments

Table of Contents

[Real-Time Rendering Tricks and Techniques in DirectX

I Foreword

Introduction

Part I - First Things First

Chapter 1 - 3D Graphics: A Historical Perspective
Chapter 2 - A Refresher Course in Vectors
Chapter 3 - A Refresher Course in Matrices
Chapter 4 - A Look at Colors and Lighting
Chapter 5 - A Look at the Graphics Pipeline

Part II - Building the Sandbox

[Chapter 6 - Setting Up the Environment and Simple Win32 App

i

Chapter 7 - Creating and Managing the Direct3D Device
Part III - Let the Rendering Begin

[Chapter 8 - Everything Starts with the Vertex

[Chapter 9 - Using Transformations

O Chapter 10 - From Vertices to Geometry

I Chapter 11 - Fixed Function Lighting

I Chapter 12 - Introduction to Textures

Chapter 13 - Texture Stage States

Depth Testing and Alpha Blending

F
=
o]
—t
]
-3
—_
N
1

Part IV - Shaders
[Chapter 15 - Vertex Shaders
Chapter 16 - Pixel Shaders

Part V - Vertex Shader Techniques

Provides a clear path to detailing frequently requested DirectX features.

ISBN:1931841276

Chapter 17 - Using Shaders with Meshes

Simple and Complex Geometric Manipulation with Vertex

3 Chapter 18 -
Shaders

Chapter 19 - Billboards and Vertex Shaders
[Chapter 20 - Working Outside of Cartesian Coordinates
Chapter 21 - Bezier Patches
[Chapter 22 - Character Animation—Matrix Palette Skinning
[Chapter 23 - Simple Color Manipulation
[Chapter 24 - Do-It-Yourself Lighting in a Vertex Shader
Chapter 25 - Cartoon Shading
I Chapter 26 - Reflection and Refraction
Chapter 27 - Shadows Part 1—Planar Shadows
Chapter 28 - Shadows Part 2—Shadow Volumes

Chapter 29 - Shadows Part 3—Shadow Maps

Part VI - Pixel Shader Techniques
[Chapter 30 - Per-Pixel Lighting
Chapter 31 - Per-Pixel Lighting—Bump Mapping
[Chapter 32 - Per-Vertex Techniques Done per Pixel
Part VII - Other Useful Techniques
[Chapter 33 - Rendering to a Texture—Full-Screen Motion Blur
[Chapter 34 - 2D Rendering—Just Drop a “D”
[Chapter 35 - DirectShow: Using Video as a Texture
Chapter 36 - Image Processing with Pixel Shaders
[Chapter 37 - A Much Better Way to Draw Text
Chapter 38 - Perfect Timing
Chapter 39 - The Stencil Buffer
Chapter 40 - Picking: A Plethora of Practical Picking Procedures
In Conclusion...
1 Index
List of Figures
List of Tables

List of Sidebars

f:;-“;CD Content

Real-Time Rendering Tricks and Techniques in

DirectX

Kelly Dempski

© 2002 by Premier Press. All rights reserved. No part of this book may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system without written permission from Premier Press, except for the

inclusion of brief quotations in a review.

Premier Press, Inc. is a registered trademark of Premier Press, Inc.
Publisher: Stacy L. Hiquet

Marketing Manager: Heather Buzzingham

Managing Editor: Sandy Doell

Acquisitions Editor: Mitzi Foster

Series Editor: André LaMothe

Senior Project Editor: Heather Talbot

Technical Reviewer: André LaMothe

Microsoft and DirectX are registered trademarks of Microsoft Corporation in the United States and/or

other countries.

NVIDIA, the NVIDIA logo, nForce, GeForce, GeForce2, and GeForce3 are registered trademarks or

trademarks of NVIDIA Corporation in the United States and/or other countries.
All other trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the appropriate software

manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary trademarks

from descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be

reliable. However, because of the possibility of human or mechanical error by our sources, Premier

Press, or others, the Publisher does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from use of such
information. Readers should be particularly aware of the fact that the Internet is an ever-changing entity.

Some facts may have changed since this book went to press.

ISBN: 1-931841-27-6

Library of Congress Catalog Card Number: 2001097326

Printed in the United States of America

0203040506 RI10987654321

Technical Reviewer: Andre LaMothe

Copy Editor: Laura R. Gabler

Interior Layout: Scribe Tribe

Cover Design: Mike Tanamachi

CD-ROM Producer: Arlie Hartman

Indexer: Sharon Shock

For Rachel

Acknowledgments

| can’t thank my wife Rachel enough. She has graciously put up with six frantic months of writing. Her
contributions ranged anywhere from simple emotional support to helping me debug pixel shaders in the

early hours of the morning. This book would not have been possible without her patience and support.

I'd like to thank all my friends and family for their support. I've had less time to spend with the people

who are important to me. Thank you for your patience these past months.

Thanks to Stan Taylor, Anatole Gershman, Edy Liongosari, and everyone at Accenture Technology
Labs for their support. Many thanks to Scott Kurth for proofreading, suggestions, and the occasional
reality check. Also, many thanks to Mitu Singh for taking the time to help me with many of the images

and equations. | have the privilege of working with a fantastic group of people.

Also, I'd like to thank all the other people who worked on this book. | really appreciate the help of Emi
Smith, Mitzi Foster, Heather Talbot, Kris Simmons, and André LaMothe. Thanks to all of you for walking

me through my first book.

Finally, | need to thank Philip Taylor (Microsoft), Jason Mitchell (ATI), Sim Dietrich (nVidia), and many

other presenters from each of these three companies. Much of what | have learned comes from their

excellent presentations and online materials. Their direct and indirect help is greatly appreciated. Also,

I'd like to thank Sim Dietrich for taking the time and effort to write the foreword.

All the people mentioned above contributed in some way to the better aspects of this book. | deeply

appreciate their contributions.

About the Author

Kelly Dempski has been a researcher at Accenture’s Technology Labs for seven years. His research
work has been in the areas of multimedia, Virtual Reality, Augmented Reality, and Interactive TV, with a
strong focus on photo-realistic rendering and interactive techniques. He has authored several papers
and one of his projects is part of the Smithsonian Institution’s permanent collection on Information

Technology.

Letter from the Series Editor

Let me start by saying, buy this book! Real-Time Rendering Tricks and Techniques in DirectX is simply
the most advanced DirectX book on the market—period! The material in this book will be found in no
other book, and that’s all there is to it. | am certain that the author Kelly Dempski is an alien from
another world since there’s no way a human could know this much about advanced DirectX. | know
since | am from another planet <SMILE>. This book covers all the topics you have always heard about,

but never knew exactly how to implement in real time.

In recent times, Direct3D has become a very complex and powerful API that leverages hardware to the
max. The programmers at Microsoft are not playing games with it and Direct3D is in sync with the
hardware that it supports, meaning if there is hardware out there that does something, you can be sure
that Direct3D can take advantage of it. In fact, Direct3D has support for operations that don't exist.
Makes me wonder if Bill has a time machine. The only downfall to all this technology and functionality is
that the learning curve is many months to years—and that’s no joke. Try learning Direct3D on your own,
and it will take you 1-2 years to master it. The days of just figuring things out are over, you need a

master to teach you, and then you can advance from there.

Real-Time Rendering Tricks and Techniques in DirectX starts off making no assumptions about what
you know. The first part of the book covers mathematics, matrices, and more. After that groundwork is
laid, general Direct3D is covered in |, so we are all on the same page. The coverage of Direct3D alone
is worth the price of the book. However, after the basic Direct3D coverage, the book starts into special
effects programming using various advanced techniques like vertex shaders and pixel shaders. This
stuff is completely voodoo. It's not like it's hard, but you simply would have no idea where to start if you

were to read the DirectX SDK. Kelly knows where to start, where to end, and what goes in the middle.

Now, | don’t want to get you too excited, but if you read this book you WILL know how to perform such
operations as advanced texture blending, lighting, shadow mapping, refraction, reflection, fog, and a

bazillion other cool effects such as “cartoon” shading. What | like about this book is that it really does

live up to its title, and the material is extremely advanced, but at the same time very easy to understand.
The author makes things like refraction seem so easy. He’s like, “a dot product here, change the angle
there, texture index, and output it, and whammo done!”—and you’re like sitting there going “wow, it
works!”. The point is that something like refraction or reflection seems easy theoretically, but when you
try to do it, knowing where to begin is the problem. With Real-Time Rendering Tricks and Techniques in
DirectX, you don’t have to worry about that; you will learn the best approaches to every advanced
rendering technique known to humanity and be able to skip the learning and experimentation that
comes with trial and error. Additionally, the book has interesting tips and asides into the insides of
DirectX and why something should or should not be done in a specific way; thus, no stone is left

unturned.

Well, | can’t tell you how much | recommend this book; you will be a Direct3D master by the end of
reading it. And if that wasn’t enough, it even covers how to use DirectShow! | finally can play a damn

video!
Sincerely,

André LaMothe
SERIES EDITOR

Foreword

Over the past few years, the field of real-time graphics has come into its own. Consumer-level graphics
processors are now available with speed and capabilities rivaling the most expensive workstations of

just a few years ago.

In addition, recent papers presented at Siggraph, the premier graphics research conference and
exhibition, have been more and more focused on real-time graphics, as opposed to off-line rendering

techniques.

The biggest advance in consumer real-time graphics over the past year has been the advent of
programmable shading technology as found in the NVIDIA GeForce3™ and GeForce4 ™ Ti line of
products, in addition to the Microsoft Xbox ™ GPU (Graphics Processing Unit), and the Radeon ™ 8500

series from ATI Technologies.

Now, instead of being tied into a fixed-function lighting model that includes diffuse and specular terms
evaluated per-vertex, one can program a custom lighting solution, taking into account per-pixel bump
mapping, reflection, refraction, Fresnel, and self-shadowing terms. This flexibility not only improves the
capability of realistic traditional rendering, but opens the door to non-photorealistic techniques, such as

cel shading, hatching, and the like.

This very flexibility does come at a cost, however, and one aspect of this cost is complexity. As

developers fashion their shading models to consider more and more factors, each parameter to the

shading function must be provided somehow. Initially, these will be supplied via artist-authored texture
maps and geometric models. Over time, however, as graphics processors (GPUs) become even more
programmable, many parameters will be filled in procedurally via pseudo-random noise generation. It
will fall to the artists to merely specify a material type such as ‘marble’, ‘oak’, etc. and a few parameters,

and the actual pattern of the surface will be created on the fly in real time.

Another way the complexity of programmable shading becomes expensive is via education. It's much
simpler to learn the ins and outs of a ‘configurable’ vertex or pixel engine, like that exposed by a GPU
such as the original GeForce or GeForce2. Learning not only what to do, but also what is possible is a

challenge to be sure.

In one sense, it’s trivial to implement an algorithm with a fully general CPU with true floating point
capability, but it takes a real-time graphics programmer’s talent to get last year’s research paper running

in real time on today’s hardware, with limited floating point capability and processing time.

Lastly, the blessing of flexibility comes with the curse of the new. Due to the recent development of real-
time programmable shading, the tools are only now beginning to catch up. Major 3D authoring
applications are tackling this problem now, so hopefully the next major revision of your favorite 3D

authoring tool will include full support for this exciting new technology.

Over time, real-time graphics languages will move from the current mix of floating-point and fixed-point
assembly level, to fully general floating point throughout the pipeline. They will also shed the form of
assembly languages, and look more like high-level languages, with loops, conditionals, and function
calls, as well as professional IDEs (Integrated Development Environments) specifically tailored to real-

time graphics needs.

Hopefully you will find Real-Time Rendering Tricks and Techniques in DirectX a good starting place to

begin your journey into the future of real-time graphics.

D. Sim Dietrich Jr.
February 2002

Introduction

If you're reading this book at home, good—because | have every intention of making this a book that
you can use as a reference for a long time. If you’re reading this at the bookstore, then bring it home
(they appreciate it if you pay first) because it’s terribly inconvenient to run to the bookstore each time
you need to implement one of the cool techniques this book describes. When | taught a programming
class, | told them, “I don’t know everything, but | know where to find everything.” Every good
programmer has a couple of books that are good to refer to periodically. This is one of those books, but

before we get to the good stuff, let's get some basic introductions out of the way.

Who Is This Book For?

Simply put, this book is for you! If you're reading this, you picked this book off the shelf because you
have an interest in learning some of the more interesting parts of graphics programming. This book
covers advanced features in a way that is easy for beginners to grasp. Beginners who start at the
beginning and work their way through should have no problem learning as the techniques become more
advanced. Experienced users can use this book as a reference, jumping from chapter to chapter as

they need to learn or brush up on certain techniques.

How Should You Read This Book?

The goal of this book is two-fold. First, | want you to be able to read this book through and gain an
understanding of all the new features available in today’s graphics cards. After that, | want you to be
able to use this as a reference when you begin to use those features day to day. It is a good idea to
read the book cover to cover, at least skimming chapters to get a feel for what is possible. Then later, as
you have specific needs, read those chapters in depth. Frequently, | answer questions from people who
weren’t even aware of a technique, much less how to implement it. Your initial reading will help to plant

some good ideas in your head.

Also, many of the techniques in this book are implemented around one or two examples that highlight
the technique. While you’re reading this, it's important to view each technique as a tool that can be
reapplied and combined with other techniques to solve a given problem. For each technique, I'll discuss
the broader possibilities, but in many cases, you might discover a use for a technique that | never
imagined. That's the best thing that can happen. If you’'ve gotten to the point that you can easily rework
and reapply the techniques to a wider range of problems, then you have a great understanding of the
technology.

What Is Included?

CD Content

I explain higher-level concepts in a way that is clear to all levels of readers. The text itself explains the
basic techniques, as well as a step-by-step breakdown of the source code. The CD contains all the
source code and media needed to run the examples. In addition, I've included some tools to help get

you started in creating your own media.

Who Am I?

| am a researcher with Accenture Technology Labs. A large part of my job involves speaking to people
about technology and what the future holds for businesses and consumers. Some past projects have
received various awards and numerous publications. My most recent projects involved work in
augmented and virtual reality, and many other projects involved gaming consoles and realistic graphics.
I’'m not a game programmer, but a large part of my work involves using and understanding the same
technologies. | have the luxury of working with new hardware and software before it becomes readily
available, and it's my job to figure it out and develop something new and interesting. Unlike many other
authors of advanced books, | do not have a background in pure mathematics or computer science. My

background is in engineering. From that perspective, my focus is implementing techniques and getting

things done rather than providing theoretical musings. And if for some reason | don’t succeed, you know

where to reach me!

Kelly Dempski

Graphics book@hotmail.com

Part I: First Things First

Chapter List

Chapter 1: 30 Graphics: A Historical Perspective
Chapter 2: A Refresher Course in Vectors
Chapter 3: A Refresher Course in Matrices
Chapter 4: A Look at Colors and Lighting

Chapter 5: A Look at the Graphics Pipeline

If you're like me, you're dying to jump headlong into the code. Slow down! These first several chapters
deal with some of the basic concepts you'll need in later chapters. Advanced readers might want to skip
this section entirely, although | recommend skimming through the sections just to make sure that you
really know the material. For beginner readers, it's a good idea to read these chapters carefully.
Different people will pick up on the concepts at different rates. These chapters move through the
material quickly. If you read a chapter once and you don’t fully understand it, don’t worry too much.
Later chapters continually explain and use the concepts. | know for me personally, | don’t truly
understand something until | use it. If you’re like me, read the chapters, digest what you can, and wait

until you start coding. Then, return to these earlier chapters to reinforce the concepts behind the code.

Here’s a brief breakdown of the chapters in this section:

" Chapter 1, “3D Graphics: A Historical Perspective,” is a brief look back at the last couple years of

technological development in the area of 3D graphics. It's not a complete retrospective, but it
should give you an idea of why this is an interesting time to be in the field.

. Chapter 2, “A Refresher Course in Vectors,” runs through the definition of a vector and the ways

to mathematically manipulate vectors. Because so many of the techniques are based on vector
math, | highly recommend that you read this chapter.

. Chapter 3, “A Refresher Course in Matrices,” briefly explains matrices and the associated math. It

explains matrices from an abstract perspective, and beginners might need to get to the later
chapter on transformations before they completely understand. The discontinuity is intentional. |
want to keep the abstract theory separate from the implementation because the theory is reused

throughout many different implementations.

. Chapter 4, “A Look at Colors and Lighting,” explains the basics of color and lighting. This theory

provides the basis of many shader operations in later chapters. If you’ve never implemented your
own lighting before, reading this chapter is a must.

] Chapter 5, “A Look at the Graphics Pipeline,” is the final look at “the basics.” You will look at how

data moves through the graphics card and where performance bottlenecks can occur. This chapter

provides a basis for later performance tips.

Chapter 1: 3D Graphics: A Historical Perspective

Overview

| was in school when DOOM came out, and it worked like a charm on my state-of-the-art 486/25. At the
time, 3D graphics were unheard of on a consumer PC, and even super-expensive SGI machines were
not extremely powerful. A couple years later, when Quake was released, 3D hardware acceleration was
not at all mainstream, and the initial version of Quake ran with a fast software renderer. However,
Quake was the “killer app” that pushed 3D hardware acceleration into people’s homes and offices. In
July 2001, Final Fantasy debuted as the first “hyper-realistic,” completely computer-generated feature
film. Less than a month later, nVidia’s booth at SIGGRAPH featured scenes from Final Fantasy running
in real time on its current generation of hardware. It wasn’t as high quality as the movie, but it was very
impressive. In a few short years, there have been considerable advances in the field. How did we get
here? To answer that, you have to look at the following.

" Hardware advances on the PC.

] Hardware advances on gaming consoles.

" Advances in movies.

" A brief history of DirectX.

" A word about OpenGL.

Hardware Advances on the PC

Prior to Quake, there was no killer app for accelerated graphics on consumer PCs. Once 3D games
became popular, several hardware vendors began offering 3D accelerators at consumer prices. We can
track the evolution of hardware by looking at the product offerings of a particular vendor over the years.
If you look at nVidia, you see that one of its first hardware accelerators was the TNT, which was
released shortly after Quake in 1995 and was followed a year later by the TNT2. Over the years, new
products and product revisions improved at an exponential rate. In fact, nVidia claims that it advances at

Moore’s Law cubed!

It becomes difficult to accurately chart the advances because we cannot just chart processor speed.
The geForce represents a discontinuity as the first graphics processing unit (GPU), capable of doing
transform and lighting operations that were previously done on the CPU. The geForce2 added more
features and faster memory, and the geForce3 had a significantly more advanced feature set. In
addition to increasing the processing speed of the chip, the overall work done per clock cycle has

increased significantly. The geForce3 was the first GPU to feature hardware-supported vertex and pixel

10

shaders. These shaders allow developers to manipulate geometry and pixels directly on the hardware.
Special effects traditionally performed on the CPU are now done by dedicated 3D hardware, and the
performance increase allows for cutting-edge effects to be rendered in real time for games and other
interactive media and entertainment. These shaders form the basis of many of the tricks and techniques
discussed in the later chapters. In fact, one of the purposes of this book is to explore the use of shaders

and how you can use this new technology as a powerful tool.

Not only has hardware dramatically increased in performance, but also the penetration of 3D
acceleration hardware is rapidly approaching 100 percent. In fact, all consumer PCs shipped by major
manufacturers include some form of 3D acceleration. Very powerful geForce2 cards are being sold for
less than US$100, and even laptops and other mobile devices feature 3D acceleration in growing
amounts. Most of this book was written on a laptop that outperforms my 1999 SGI workstation!
Hardware that supports shaders is not ubiquitous yet, but game developers need to be aware of these
new features because the install base is guaranteed to grow rapidly. The PC is an unpredictable
platform. Some customers might have the latest and greatest hardware, and others may have old 2D

cards, but if you ignore these new features, you will fall behind.

Hardware Advances on Gaming Consoles

Although nVidia claims to run at Moore’s Law cubed, offering new products every six months, consoles
must have a longer lifespan. In fact, for several years, the performance of gaming consoles did not
increase dramatically. The Atari 2600 had a 1MHz processor in 1978, and gains were modest
throughout the 80s and early 90s. In the mid 90s, consoles started to increase in power, following the
curve of the PC hardware accelerators. However, starting in 2000 and into 2001, console power took a
dramatic upswing with the introduction of Sony’s PS2 and Microsoft’'s Xbox. In fact, Sony had a bit of a
snag when the Japanese government claimed that the PS2 might fall under the jurisdiction of laws
governing the export of supercomputing technology! The Xbox features much higher performance
numbers, but fans of the PS2 support Sony religiously. In fact, comparisons between the PS2 and the
Xbox are the cause of many a flame war. Regardless of which console is truly the best, or what will
come next, the fact remains that tens of millions of people have extremely high-powered graphics
computers sitting in their living rooms. In fact, gaming console sales are expected to outnumber VCR
sales in the near future. Now that consoles are a big business, advances in technology should
accelerate. One of the nice things about the Xbox is that many of the techniques you will learn here are
directly applicable on the Xbox. This is an interesting departure from the usual “proprietary” aspects of

console development.

Advances in Movies

One of the first movies to really blow people away with computer-generated (CG) effects was Jurassic
Park. The first Jurassic Park movie featured realistic dinosaurs rendered with technology specially
invented for that movie. The techniques were continually enhanced in many movies, leading up to Star
Wars Episode 1, which was the first movie to feature an all-digital realistic character, to Final Fantasy,

where everything was computer generated. Many of the techniques developed for those movies were

11

too processor-intensive to do in real time, but advances in techniques and hardware are making more
and more of those techniques possible to render in games. Many of the shaders used by movie houses
to create realistic skin and hair are now possible to implement on the latest hardware. Also, geometry
techniques such as morphing or “skinning” can now occur in real time. The first Jurassic Park movie
featured textures that were skinned over the moving skeletons of the dinosaurs. A simplified form of
skinning is now standard in 3D games. The third Jurassic Park movie expanded on that, creating
volumetric skin and fat tissue that stretches and jiggles as the dinosaur moves, creating a more realistic
effect. | bet that this type of technique will be implemented in games in the not-too-distant future.

A Brief History of DirectX

To effectively use all this new hardware, you need an effective API. Early on, the APl was fragmented
on Windows platforms. Many people from the 3D workstation world were using OpenGL, while others
were using 3DFX'’s proprietary Glide API. Still others were developing their own custom software
solutions. Whether you like Microsoft or not, DirectX did a good thing by homogenizing the platforms,
giving hardware vendors a common API set, and then actually enforcing the specification. Now,
developers have a more stable target to work toward, and instead of writing several different versions of

a renderer, they can spend time writing a better game.

Despite this, early versions of Direct3D were a bit clumsy and difficult to use. An old plan file from John
Carmack (the engine developer for id Software) describes all the faults of early Direct3D. Many of the
points were fair at the time, and that plan is still referenced today by people who don’t like Direct3D, but
the fact is that as of version 8.0, the API is dramatically better and easier to use. Significant changes
affected the way 3D data is rendered, and the 2D-only API DirectDraw was dropped entirely. One of the
reasons for this is that hardware is increasingly tuned to draw 3D very effectively. Using the 3D
hardware to draw 2D is a much better use of the hardware than traditional 2D methods. Also gone is the
difference between retained mode and immediate mode. Retained mode was often criticized for being
bloated and slow but much easier for beginners. Current versions of the API feature a more user-
friendly immediate mode (although it's not explicitly called that anymore) and a streamlined helper
library, D3DX.

D3DX is, for the most part, highly optimized and not just a modernized retained mode. It includes
several subsets of functions that handle the basic but necessary tasks of setting up matrices and
vectors and performing mathematical operations. Also, several “ease-of-use” functions do everything
from texture loading from a variety of image formats to optimizing 3D meshes. Veterans of Direct3D
programming sometimes make the mistake of equating D3DX with D3DRM (Direct3D Retained Mode),
which was slow. This is not the case, and you should use D3DX whenever it makes sense to. In the

next chapters, | begin to show some of the basic utility functions of D3DX.

As | mentioned earlier, one of the most exciting developments in both hardware and the DirectX API is
the development of shaders. DX8.0 features a full shader API for shader-compatible hardware. For
hardware that doesn’t support shaders, vendors have supplied drivers that implement vertex shaders

very efficiently in hardware emulation. Most of the techniques discussed in this book were not possible

12

in earlier versions of DirectX. Others were possible but much more difficult to implement effectively. For
experienced DirectX programmers, it should be clear how much more powerful the new APl is. For

people who are new to DirectX, the new features should help you get started.

A Word about OpenGL

The PS2-versus-Xbox religious war is a pillow fight compared to the some of the battles that are waged
over DirectX versus OpenGL. It's gotten bad enough that, when someone asked about OpenGL in a

DirectX newsgroup, one of the Microsoft DirectX people replied immediately and accused him of trying
to start a flame war. That response, in turn, started a flame war of its own. So it is with great trepidation

that | weigh in on the topic.

I'll say first that | have done more than my fair share of OpenGL programming both on SGI machines
and PCs. | find it easy to use and even enjoyable, so much so that | have recommended to several new
people that they get their feet wet in OpenGL before moving to DirectX. If you are trying to decide which
API to use, the short answer is that you should become educated and make educated decisions. In fact,
| think most of the flame wars are waged between people who are ignorant about one or the other API
(or both). There are advantages and disadvantages to each. If you are developing a product, look at
your target platforms and feature set and decide which API best suits your needs. If you are a hobbyist

or just getting started, spend some time looking at both and decide which you're most comfortable with.

The good news is that although the code in this book is developed with and for DirectX graphics, most
of the concepts are applicable to any 3D API. If you are an experienced OpenGL programmer, you can

easily port the code to OpenGL with minimal pain. So let’s get started!

Chapter 2: A Refresher Course in Vectors

Overview

If you have worked with graphics at all, you have been working with vectors, whether you knew it or not.
In Tetris, for example, the falling pieces follow a vector. In a drawing program, any pixel on the screen is
a position that can be represented as a vector. In this chapter, you will look at what vectors are and how
you can work with them. | will discuss the following points.

= The definition of a vector.

] Normalizing a vector.

" Vector arithmetic.

] The use of the vector dot product.

] The use of the vector cross product.

" A brief explanation of quaternions.

] Using D3DX vector structures.

What Is a Vector?

13

A vector, in the simplest terms, is a set of numbers that describe a position or direction somewhere in a
given coordinate system. In 3D graphics, that coordinate system, or “space,” tends to be described in
Cartesian coordinates by (X, Y, Z). In 2D graphics, the space is usually (X, Y). Figure 2.1 shows each

type of vector.

Figure 2.1: 2D and 3D vectors.

Note that vectors are different from scalars, which are numbers that represent only a single value or
magnitude. For instance, 60mph is a scalar value, but 60mph heading north can be considered a vector.
Vectors are not limited to three dimensions. Physicists talk about space-time, which is at least four
dimensions, and some search algorithms are based on spaces of hundreds of dimensions. But in every
case, we use vectors to describe where an object is or which direction it is headed. For instance, we
can say a light is at point (X, Y, Z) and its direction is (x, y, z). Because of this, vectors form the
mathematical basis for almost everything done in 3D graphics. So you have to learn how to manipulate

them for your own devious purposes.

Normalizing Vectors

Vectors contain both magnitude (length) and direction. However, in some cases, it's useful to separate
one from the other. You might want to know just the length, or you might want to work with the direction
as a normalized unit vector, a vector with a length of one, but the same direction. (Note that this is
different from a normal vector, which | discuss later.) To compute the magnitude of a vector, simply

apply the Pythagorean theorem:

V| = |(X.Y.Z)| = V(XE +Y2 + Z2)

After you compute the magnitude, you can find the normalized unit vector by dividing each component

by the magnitude:

XYL
VITVIIV]

Figure 2.2 shows an example of how you can compute the length of a vector and derive a unit vector

with the same direction.

14

Ho larth i6 1 0
Citiateiry i B ATi

Figure 2.2: Computing a normalized unit vector.:

You will see many uses for normalized vectors in the coming chapters.

Vector Arithmetic

Vectors are essentially sets of numbers, so arithmetic vector operations are different from operations
between two numbers. There are a few simple rules to remember. You can add or subtract vectors only
with other vectors. Furthermore, the two vectors must have the same number of dimensions. Assuming
the two vectors match, addition is easy. Simply add the individual components of one vector to the

individual components of the other:
(X1,Y1,Z4) + (X2,Y2,Z2) = (Xg + Xp,Y1 + Y3,Z4 + Z)

This is easy to demonstrate graphically, using the “head-to-tail” rule, as shown in Figure 2.3.

(2,2 (2, 1) (2+2,2+1) (4,3

Figure 2.3: Adding two vectors.

Vector multiplication is the opposite. You can only perform simple multiplication between a vector and a
scalar. This has the effect of lengthening or shortening a vector without changing its direction. In this

case, the scalar is applied to each component:
(XY, Z2)*A = (X*AY*A,Z*A)

This is shown in Figure 2.4. The multiplication operation scales the vector to a new length.

15

Muitiply by 3.0 'S
{scalar vakpa)
V=3 Length= 32

Lengih =42

L)

Figure 2.4: Scaling (multiplying) a vector by a scalar value.:

Vector arithmetic can be useful, but it does have its limits. Vectors have interesting properties exposed
by two operations that are unique to vectors, the dot product and the cross product.

Vector Dot Product

The dot product of two vectors produces a scalar value. You can use the dot product to find the angle
between two vectors. This is useful in lighting calculations where you are trying to find out how closely
the direction of the light matches the direction of the surface it’s hitting. Figure 2.5 shows this in abstract.
The two vectors point in different directions and | want to know how different those directions are. This

is where the dot product is useful. Figure 2.5 will supply the parameters for the dot product equations
below.

Uy =4 U

T How large is the
angle between L and V7

Figure 2.5: Two vectors in different directions.

There are two ways to compute the dot product. The first way involves using the components of the two

vectors. Given two vectors, use the following formula:
UeV = (X, Yu,Zu) (X0, Yv,Zy) = (Xi"Xy) + (Yu'Yy) + (Z20°20)
The other method is useful if you know the magnitude of the two vectors and the angle between them:

UsV = |U]|V|cosB

16

Therefore, the dot product is determined by the angle. As the angle between two vectors increases, the
cosine of that angle decreases and so does the dot product. In most cases, the first formula is more
useful because you'll have the vector components. However, it is useful to use both formulas together to
find the angle between the two vectors. Equating the two formulas and solving for theta gives us the

following formula:

(X" X) + (Yy"Yy) + (£,°Z,)
UIIV]

0 = Ocos

Figure 2.6 shows several examples of vectors and their dot products. As you can see, dot product

values range from —1 to +1 depending on the relative directions of the two vectors.

U aned W are in nedry e same
direction Tha oot producs wil
b wery ciosa 1o 1.0

U and ¥ ahe perpendhiulir
Th dol product will ba 0.0

—— -
L

=

U and ¥ are almost exacly opposite
T ol v will Dy vy
choga 1 -1.0

u il
s : -
X i

Figure 2.6: Vector combinations and their dot products.:

Figure 2.6 shows that two vectors at right angles to each other have a dot product of 0. This can also be

illustrated with the following equation.
U=(1,0)
V=(0,1)
UV =(1*0) + (0*1)=0

The dot product is one of the most useful and ubiquitous vector operations | use in this book. Finding
the angles between vectors helps determine lighting, orientation, and many other 3D attributes. Also,

many calculations are less concerned with the actual angle and are implemented more efficiently using

17

the dot product itself. The dot product appears in nearly every technique in this book. It is an invaluable
tool. But you’re not done yet. There’s one last useful vector operation.

Vector Cross Product

The cross product of two vectors is perhaps the most difficult to conceptualize. Computing the cross
product of two vectors gives you a third vector that is perpendicular to both of the original vectors. To
visualize this, imagine three points in space, as in Figure 2.7. Mathematically speaking, those three
points define a plane for which there is only one perpendicular “up direction.” Using those three points,
you can get two vectors, Vab and Vac. The cross product of those two vectors is perpendicular to the

two vectors and is therefore perpendicular to the plane.

Figure 2.7: The cross product of two vectors.

Like the dot product, the cross product of two vectors can be computed in two different ways. The first

way is the most useful because you will usually have the actual vector components (X, Y, Z):
UxV = N = (Xn,Yn®Zn)
Xn = (Yu*2Zv) — (Zu*Yv)
Yn = (Zu*Xv) — (Xu*Zv)
Zn = (Xu*Yv) — (Yu*Xv)

Figure 2.8 shows the simplest example of this equation. The two input vectors point straight along two

of the three main axes. The resulting vector is pointing straight out of the page.

18

N =U xF =(0,3,0)x(4,0,0)
X, =(3*0)-(0*0)=0

o ¥, = (0%4)—(0*%0)=0
Z, =(0%0)-(3*4)=12
N =(0,0,12)
—

M v +X

Figure 2.8: Computing a simple cross product.:

It is important to note here that the vector N is perpendicular to the two vectors, but it is not necessarily
a unit vector. You might need to normalize N to obtain a unit vector. This is the easiest way to find the
vector that is perpendicular to a surface, something very necessary in lighting and shading calculations.
It is also important to note that the cross product is not commutative. Changing the order of operations

changes the sign of the cross product:
UxV = —(VxU)

The second method is useful if you already know the angle between the two vectors. You can also

rearrange it so that you can solve for the angle if you know the cross product:
UxV = N*|U||V|sin®

Remember that vectors can only be multiplied by scalar values. In the preceding formula, the normal
vector N is multiplied by the magnitudes of the two vectors and the sine of the angle. If you combine the
two formulas, you can solve for the angle between two vectors. This means that if you have two vectors
and you want to figure out how to turn from one to the other, you can use the cross product to find the
angle you need to turn and the axis you need to turn about. Now that I'm talking about angles, I'm really
talking about rotation. The vectors I've been talking about so far describe positions and directions in

space, but there is a different kind of vector you can use to describe rotations.

Quaternions

Mathematically, the theory behind quaternions can be quite complex. | mean that literally: Quaternions
were originally developed to deal with complex numbers! The DirectX documentation describes

quaternions as a four-dimensional vector describing an axis of rotation and the angle around that axis:

Q= (V,w) = (X,Y,Z,w)

19

Although that is an oversimplification in a mathematical sense, it is a good functional definition for your

purposes. Using quaternions, you can specify an axis of rotation and the angle, as shown in Figure 2.9.

Figure 2.9: A quaternion in 3D.

During an animation, quaternions make rotations much easier. Once you know the axis, you simply
increment the angle w with each frame. You can do several mathematical operations on quaternions,
and in later chapters | show some concrete examples of their usefulness. In fact, quaternions are
conceptually one of the most difficult things to understand. The later chapter dealing with terrain will
provide some insight into how you can effectively use quaternions. However, whether we're talking
about simple vectors or quaternions, we can make our lives easier by using mathematical functions

supplied in the D3DX libraries.
Vectors in D3DX

So far, I've been discussing vectors in purely mathematical terms. Although it's important to know how
to do these things ourselves, we don’'t have to. D3DX contains many of these functions. Many people
choose to recreate these functions, thinking that they can write a better cross-product function than the
D3DX one. | urge you not to do this. The creators of D3DX have gone to great lengths not only to create
tight code, but also to optimize that code for specialized instruction sets such as MMX and 3Dnow. It

would be a lot of work to duplicate that effort.

In a few chapters, | talk more about actually using the D3DX functions in code, but for now, let’s talk
about the data structures and some of the functions while the theory is still fresh in your mind. To start,

D3DX includes four different categories of vectors, shown in Table 2.1.

Table 2.1: D3DX Vector Data Types

Data Type Comments

D3DXVECTOR2 A 2D vector (FLOAT X, FLOAT YY)

D3DXVECTOR3 A 3D vector (FLOAT X, FLOAT Y, FLOAT 2)
D3DXVECTOR4 A 4D vector (FLOAT X, FLOAT Y, FLOAT Z, FLOAT W)

20

Table 2.1: D3DX Vector Data Types

Data Type Comments
D3DXQUATERNION A 4D quaternion (FLOAT X, FLOAT Y, FLOAT Z, FLOAT
w)

| do not list all the D3DX functions here, but Table 2.2 contains a few of the basic functions you can use
to deal with vectors. Later chapters highlight specific functions, but most functions adhere to the same
standard form. There are functions for each vector data type. Table 2.2 features the 3D functions, but

the 2D and 4D functions are equivalent.

Table 2.2: D3DX Vector Functions

Function Name Comments

D3DXVec3Add (D3DXVECTOR3* pOutput, Adds two vectors

D3DXVECTOR3* pVectorl, D3DXVECTOR3*

pVector?2)

D3DXVec3Subtract (D3DXVECTOR3* pOutput, Subtracts two vectors

D3DXVECTOR3* pVectorl, D3DXVECTOR3*

pVector?2)

D3DXVec3Cross (D3DXVECTOR3* pOutput, Computes the cross

D3DXVECTOR3* pVectorl, D3DXVECTOR3* product of two vectors

pVector?2)

D3DXVec3Dot (D3DXVECTOR3* pOutput, Computes the dot

D3DXVECTOR3* pVectorl, D3DXVECTOR3* product of two vectors

pVector?2)

D3DXVec3Length (D3DXVECTOR3 *pVector) Computes the length of a
vector and returns a
FLOAT

D3DXVec3Normalize (D3DXVECTOR3* Computes the

pOutput, D3DXVECTOR3* pVector) normalized vector

D3DXQuaternionRotationAxis Creates a quaternion

(D3DXQUATERNION*pOutput, from an axis and angle

D3DXVECTOR3* pAxis, FLOAT RotationAngle) (in radians)

In general, D3DX function parameters are a pointer to the output result and pointers to the appropriate
numbers of inputs. In addition to an output parameter, the functions also return the result in a return

value, so functions can serve as parameters to other functions. Later, | explain how to use many of

21

these functions. For now, just be assured that much of the work is done for you, and you do not need to
worry about implementing your own math library.

In Conclusion...

Vectors form the basis of nearly everything you will do in the coming chapters. Many of the more
advanced tricks are based heavily on vector math and understanding how vectors representing light
rays, camera directions, and surface normals interact with each other. In later chapters, you will learn
more about vectors, but the following points serve as a good foundation for what you will be doing:

] Vectors represent positions, orientations, and directions in multidimensional space.

] You can compute the magnitudes of vectors using the Pythagorean theorem.

= Vectors can be normalized into unit vectors describing their direction.

= You can add or subtract vectors by applying the operations to each component separately.

= Vectors can only be multiplied by scalar values.

= The vector dot product is a scalar value that describes how directionally similar two vectors are.
= The vector cross product is a normal vector that is perpendicular to both vectors.

= You can use the vector cross product to find the angle of rotation between two vectors.

ol Quaternions can be used as compact representations of rotations in 3D space.

" The D3DX library contains the mathematical functions you need to do most forms of vector math.

Chapter 3: A Refresher Course in Matrices

You can’t get far into 3D graphics before you run into matrices. In fact, most 3D APIs force you to use
matrices to get anything on the screen at all. Matrices and matrix math can be confusing for the novice
or casual programmer, so this chapter explains matrices in simple terms. You will look at some of the
properties of matrices that make them ideal for 3D graphics and explain how they are used to affect 3D
data. Once | explain all that, you will look at how D3DX comes to the rescue (again!) and shields the
programmer from the intricacies of matrices. Although this chapter provides a brief abstract overview of
matrices, the concepts might not truly sink in until you use them firsthand. If you are new to matrices,
read this chapter, digest what you can, and then move on. Many of the concepts should become more

understandable once you start using them in code in the later chapters.

What Is a Matrix?

Most people meet matrices for the first time in algebra class, where they are used as a tool for solving
systems of linear equations. Matrices provide a way to boil a set of equations down to a compact set of
numbers. You can then manipulate that set of numbers in special ways. For instance, here is a simple

set of 3D equations and the matrix equivalent:

22

X'=3X +d4F +62
F'=4X +8Y +122
Z'=8X +16Y + 242

@ =
—
&

-y 2=y 2 s
6

._.
b
e
-

The matrix in the above equation is useful because it allows you to store variables in a general and

compact form. The following equations illustrate the general procedure for solving equations with

matrices.
Mﬂ M'l'e' M"IH
[X1Y1 Z1] = [XY Z] | M, M,, M,
M:*]"I M:‘]? M:ﬁ:‘r

Instead of dealing with arbitrary sets of arithmetic equations, we can develop software and, more
importantly, hardware that is able to manipulate matrices quickly and efficiently. In fact, today’s 3D
hardware does just that! Although equations might be more readable to us mere mortals, the matrix

representation is much easier for the computer to process.

The preceding sample shows how you can use matrices to perform multiplication. However, there are
certainly cases where you will also want to perform addition. One way to do this is to perform matrix
multiplication and addition separately. But ideally, you'd like to treat all operations in the same
homogeneous manner. You can do this if you use the concept of homogeneous coordinates. Introduce
a variable W that has no spatial properties. For the most part, W simply exists to make the math work
out. So you can perform addition easily if you always set W = 1, as shown here:

Note
You may see other notations and representations for matrices in other sources. For

example, many OpenGL texts describe a different matrix order. Both representations
are correct in their own contexts. These matrices have been set up to match the

DirectX notation.

23

=1
X'=3X+5=34 + 5/

[a]=[x WE} [x 1{?}

With the introduction of homogeneous coordinates, you can treat addition the same as multiplication, a
property that's very useful in some transformations. In Chapter 9, | show practical examples of how the
transformations are actually used. Until then, the following sections introduce you to the structure of 3D

transformations such as the identity matrix and translation, rotation, and scaling matrices.

The Identity Matrix

The identity matrix is the simplest transformation matrix. In fact, it doesn’t perform any transformations

at all! It takes the form shown here. The product of any matrix M and the identity matrix is equal to the

matrix M:
Ml =M
1000
I 0100
0010
0001

It is important to understand the structure of the identity matrix because it makes a good starting point
for all other matrices. If you want to “clear” a matrix, or if you need a starting point for a custom-crafted
matrix, the identity matrix is what you want. In fact, portions of the identity matrix are easy to see in the

real transformation matrices next.

The Translation Matrix

Translation is a fancy way of saying that something is moving from one place to another. This is a
simple additive process, and it takes the form shown here in equation and matrix form. Note the effect of

the homogeneous coordinates:

X=X +a

Y=Y +b

D'=Z+c
100 allX
0O10b|lY

1 vl 1 =

X ¥ 2] 001c Vi
0001 1

24

All translation matrices take this form (with different values in the fourth row).

The Scaling Matrix

The scaling matrix scales data by multiplying it by some factor:

X1 = X*a

Y1 =Y*b

' =7%
aDO0OorX
Ob0OO]||Y

1yl 7117 =

X Y2 00cO]||f
0001 1

Although scaling is purely multiplicative, you maintain the extra fourth dimension to make it compatible
with the translation matrix. This is the advantage of the homogeneous coordinates. | talk about how to
use matrices together after | explain the final transformation matrix.

The Rotation Matrix

The final type of transformation matrix is the rotation matrix. The complete rotation matrix contains the
rotations about all three axes. However, to simplify the explanation, | show each rotation matrix

separately, and the next section explains how they can be combined. The three rotation matrices follow:

I 0 1]
R

]

Rolation &akoul the 25 aas - R u
' R |0 =sm#@ coz& 0

]

Fiotstion #aboist the ¥ a0t | K=

cosd sin@ 0 0
- & cosd 0 D
Frdation #ahos the s K=
] 1] | b
] 1] (I

To demonstrate this, | have rotated a vector about the Z-axis, as shown in Figure 3.1. In the figure, a
vector is rotated 90 degrees about the Z-axis. As you can see, this operation changes a vector pointing

in the X direction to a vector pointing in the Y direction.

25

#0° = —rudiars

[R i

| E};:L'f cusl%j sln[gj 0o

DN o rrziooi-ad oo

Oirigiresl vecine a0 o o 1

A 0 o o1
== _T 4 ®_ i _T e 1 * 0 =

tbrmdme 2 = 42008 D+ 0052+ B20)+ (1 00) =0

= (1% s =

1+ 'i':""l‘.‘ﬂ-‘&fl:-l:l # (D=0 + 10) =1

Z= %0+ [0 0+ (0% + (1% =0

Figure 3.1: Rotating a vector with a matrix.

Putting all these matrices together yields one big (and ugly) rotation matrix. To do this, you have to

know how to concatenate multiple matrices.

Matrix Concatenation

To combine the effects of multiple matrices, you must concatenate the matrices together. This is
another reason you deal with matrices. Once each equation is in matrix form, the matrix is simply a set
of numbers that can be manipulated with matrix arithmetic. In this case, you concatenate the matrices
by multiplying them together. The product of two or more matrices contains all the data necessary to
apply all the transformations. One important thing to note is that the order in which the matrices are
multiplied is critical. For instance, scaling and then translating is different from translating and then
scaling. In the former, the scaling factor is not applied to the translation. In the latter, the translation
distance is also scaled. In Chapter 9, the sample program demonstrates how you should apply
transformations to move objects around in space. In matrix multiplication, the second matrix is the first
operand. So if you want to translate with a matrix T and then scale with S, you use the following

equation:
M =S*T

This is very important to remember: If you are ever transforming 3D objects and they are not behaving
the way you are expecting, there is a good chance that you’ve made a mistake in the order of your

matrix multiplication.

Matrices and D3DX

By now you’ve probably noticed that | have not gone into the actual mathematical methods for dealing
with matrices. This is because D3DX contains most, if not all, of the functions you need to perform the
matrix math. In addition to vector functions, D3DX contains functions that perform basic mathematical
operations between matrices, as well as some higher-level functions that allow you to build new
matrices based on vectors and quaternions. As with vectors, keep in mind that the D3DX functions are

highly optimized, and there is probably no good reason for you to implement these functions yourself.

Before you look at the D3DX functions, it's important to understand the matrix data types shown in
Table 3.1.

26

Table 3.1: D3DX Matrix Data Types

Data Type Comments

D3DMATRIX This is a 4x4 matrix. This structure contains 16 float
values that are accessible by their row-column
name. For instance, the value in the third row,

second column would be _32.

D3DXMATRIX This is the C++ version of D3DMATRIX. It features

overloaded functions that allow us to more easily

manipulate the matrices.

There are many D3DX matrix functions available. All the function names start with D3DxMatrix, and
they are handled in similar ways. Rather than list every single matrix function, Table 3.2 is a
representative sample of the most useful functions and functions that implement the ideas discussed

earlier. | show more functions and their uses in later chapters, when | can explain them in context.

Table 3.2: D3DX Matrix Functions

Function Comments
D3DXMatrixIdentity (D3DXMATRIX* pOutput) Creates an identity matrix.
D3DXMatrixTranslation (D3DXMATRIX* pOutput, Creates a translation matrix.

FLOAT X, FLOAT Y, FLOAT 2)

D3DXMatrixRotationX Creates a rotation matrix for axis
(D3DXMATRIX* pOutput, FLOAT Angle) rotations. Note that the Angle
D3DXMatrixRotationY parameter should be in radians.

(D3DXMATRIX* pOutput, FLOAT Angle)
D3DXMatrixRotationZ

(D3DXMATRIX* pOutput, FLOAT Angle)

D3DXMatrixScaling (D3DXMATRIX* pOutput, Creates a scaling matrix.

FLOAT XScale, FLOAT YScale, FLOAT ZScale)

D3DXMatrixMultiply (D3DXMATRIX* pOutput, Multiplies M1 * M2 and outputs the

D3DXMATRIX* pMatrixl, D3DXMATRIX* pMatrix2) resulting matrix.

In addition to an output parameter, the output is also passed out of the function as a return value. This
allows you to use functions as input to other functions. Because of the nature of many of these calls, the
code can end up looking almost unreadable, so this book does not do it, but it is an option.

In Conclusion...

27

If this chapter has been your first exposure to matrices, | suspect you might still be a little unclear about

how they are used. Starting in Part 3 and moving forward, everything you do will involve matrices in one

way or another. When you get to the point of actually using matrices, | spend more time talking about

the usage and the pitfalls. As you begin to actually use them, everything will become much clearer. In

the meantime, here are a few simple points that are important to remember:

= Matrices are an efficient way to represent equations that affect the way you draw 3D data.

= Homogeneous coordinates allow you to encapsulate multiplicative operations and additive
operations into the same matrix, rather than deal with two matrices.

" The identity matrix is an ideal starting point for building new matrices or “clearing out” old ones.
Sometimes no effect is a good effect.

= The translation, scaling, and rotation matrices are the basis for all spatial transformations.

= You can combine the effects of multiple matrices by multiplying the individual matrices together,
that is, concatenate them.

= In matrix multiplication, order matters!

" The D3DX libraries contain most of the useful functions needed for building and manipulating

matrices.

Chapter 4: A Look at Colors and Lighting

Overview

Vectors and matrices determine the overall position and shape of a 3D object, but to really examine
graphics, you need to take a look at color. Also, if your 3D world is going to be interesting and realistic-
looking, | need to talk about lighting and shading. As with the previous chapters, this chapter provides a
brief look at the abstract concepts of color and lighting. These topics are continually reinforced in the
later chapters when you actually start writing code. If you don’t fully understand some of the concepts
here, don’t worry. By the end of this book, you will understand more about the following topics than you
ever wanted to know.

" Color.

] Ambient and emissive lighting.

" Diffuse lighting.

" Specular lighting.

] Attenuated lights.

" Lights in Direct3D.

" Shading types.

What Is Color?

That is a dangerous question. People with names like Newton and Einstein have written a lot about the
nature of color itself. I'm not really qualified to critique their work. Instead, | spend a little time talking

about colors from a computer-graphics perspective.

28

One of the first terms you encounter is “color space.” Many different color spaces are mostly dependent
on the output medium. For example, many printing processes use the CMYK (cyan, magenta, yellow,
and black) color space because that's how the inks are mixed. Television and video use different
variations of HSB (hue, saturation, and brightness) color spaces because of the different bandwidth
requirements of the different channels. (Humans are much more sensitive to changes in brightness than
to changes in color.) But you are dealing with computers, and except for specialized cases, computers
use an RGB (red, green, blue) color space. Usually, the final color is eight bits per channel, yielding a
total of (28 * 28 * 28) = 16.7 million colors.

Most cards offer 16-bit color modes, or even 8-bit color, but those colors are usually full RGB values
before they are quantized for final output to the screen. All the samples in the book assume that you are
running with 24-bit or 32-bit color. The reason is that many of the techniques rely on a higher number of
bits to demonstrate the effects. Also, any card capable of running the techniques in this book will be
capable of running in 32-bit, at least at lower screen resolutions. In cases where you really want to use
16 bits, try the technique first in 32-bit mode and then experiment with lower bit depths. In some cases,
full 32-bit might be slightly faster because the card does not need to quantize down to a lower bit depth

before the final output to the screen.

Conceptually, colors consist of different amounts of red, green, and blue. But there’s one other channel
that makes up the final 8 bits in a 32-bit color: the alpha channel. The alpha channel isn’t really a color;
it's the amount of transparency of that color, so it affects how the color blends with other colors already
occupying a given pixel. For final output to the monitor, transparency doesn’t really make sense, so
typically people talk about RGBA during the processing of a color and RGB for the final output.

Note
Quantizing colors means confining a large range of colors to a smaller range of colors.

This is usually done by creating a color palette that best approximates the colors that
are actually used in the case of 32-bit colors on an 8-bit screen. Each 32-bit color is
then mapped to the closest 8-bit approximation. This was quite an issue for several

years, but most new cards are more than capable of displaying full 32-bit images.

For all four channels, a color depth of 32 bits means that each channel is represented by one byte with
a value from 0 to 255. However, when calculating lighting, it is sometimes mathematically advantageous
to think of the numbers as floating-point values ranging from 0.0 to 1.0. These values have more
precision than bytes, so they are better for calculations. The floating-point values are mapped back
down to the byte equivalent (0.5 becomes 128, for example) when they are rendered to the screen. For
most of the color calculations in this book, assume | am using numbers in the range of 0.0 to 1.0 unless

otherwise noted.

| can talk about the abstract notion of colors until | turn blue.... Let’s talk about how they are actually
used. All visible color is determined not only by object color, but also by lighting. For example, in a
perfectly dark room, all objects appear black, regardless of the object color. In the next sections, | talk

about how objects are lit and how that affects what the viewer sees. In the following examples, it is best

29

to think of objects as made up of surfaces. Each surface has a normal vector, which is the vector
perpendicular to the surface, as described in Chapter 1. When | talk about how objects are lit, | explain it
in terms of how each surface on the object is lit. When | talk about lighting calculations, the final output

surface color is denoted as CF.

Ambient and Emissive Lighting

Imagine a room with one lamp on the ceiling shining down on the floor. The lamp lights the floor as
expected, but some light also hits the walls, the ceiling, and any other objects in the room. This is
because the rays of light strike the floor and bounce to the wall, the ceiling, and all around the room.
This creates the effect that at least some of the light in the room is coming from all directions. This is
why the ceiling is at least somewhat lit, even though the lamp is shining away from it. This type of
lighting is called ambient lighting. The color contribution for ambient lighting is simply the product of the

ambient color of the light and the ambient color of the object:
CF = CLCA

That equation shows that if you set your ambient light to full white, your object will be full color. This can
produce a washed-out and unreal appearance. Typically, 3D scenes have a small ambient component

and rely on other lighting calculations to add depth and visual interest to the scene.

Emissive lighting is similar to ambient lighting except that it describes the amount of light emitted by the

object itself. The color contribution for emissive lighting is simple:
CF = CE

The result is the same as if you had specified a certain amount of ambient lighting for that one object.
The object shown in Figure 4.1 could either be a sphere under full ambient lighting in the scene or a

sphere emitting white light with no lighting in the scene.

Figure 4.1: Ambient-lit sphere.

30

Although ambient lighting is a good start for lighting objects based on an overall amount of light in the

scene, it doesn’t produce any of the shading that adds visual cues and realism to the scene. You need

lighting models that take into account the direction of the lighting.

Diffuse Lighting

Diffuse lighting models the type of lighting that occurs when rays of light strike an object and then are
reflected in many different directions (thereby contributing to ambient lighting). This is ideal for dull or
matte surfaces, where the surface has many variations that cause the light to scatter or diffuse when it
hits the object. Because the light is reflected in all directions, the amount of lighting looks the same to all

viewers, and the intensity of the light is a function of the angle between the light vector (L) and a given

surface normal (N):
CF = CLCDCOS®

Many times, it might be easier to use the dot product than to compute the cosine. Because of the way
the dot product is used, the light vector in this case is the vector from the surface to the light. If the

surface normal and the light vector have been normalized, the dot product equivalent becomes the

following:
CF = CLCD(N'L)

Figure 4.2 shows a graphical representation of the two equations.

Figure 4.2: Vector diagrams for cosine and dot-product diffuse lighting equations.

Figure 4.3a shows the same sphere from Figure 4.1, only this time it is lit by an overhead light and no
ambient lighting. Notice how the top of the sphere is brighter. This is because the rays from the
overhead light and the surface normals on top of the sphere are nearly parallel. Only the top of the

sphere is lit because the surface normals on the bottom face away from the light. Figure 4.3b shows the

same scene, but with a small ambient lighting component.

31

Figure 4.3: Sphere (a) with only diffuse lighting and (b) with diffuse and ambient lighting.

In real scenes, a couple of lights cause enough reflections to create ambient light, but in 3D graphics,
lights are more idealized, so an added ambient component helps to mimic the effect of reflected
ambient light. Adding a small ambient component is more efficient than adding more lights because it

takes much less processing power.

Most of the shaded lighting in 3D graphics is based on diffuse lighting because most materials at least
partially diffuse the light that strikes them. Diffuse lighting also supplies a relatively cheap way to
calculate nice shading across an object’s surface. The last important thing to remember about diffuse
lighting is that because the light is evenly diffused, it appears the same for all viewers. However, real

reflected light is not the same for all viewers, so you need a third lighting model.

Specular Lighting

Specular lighting models the fact that shiny surfaces reflect light in specific directions rather than
diffused in all directions. Unlike diffuse lighting, specular lighting is dependent on the direction vector of
the viewer (V). Specular highlights appear on surfaces where the vector of the reflected light (R) is
directed toward the viewer. For different viewers, this set of surfaces might be different, so specular
highlights appear in different places for different viewers. Also, the shininess of an object determines its
specular power (P). Shinier objects have a higher specular power. The specular lighting equation takes

the form of
Cr = C.Ci(R*V)’
R = 2N(N-L) - L

The reflection vector is computationally expensive and must be computed for every surface in the scene.
It turns out that an approximation using a “halfway vector” can yield good results with fewer
computations. The halfway vector is the vector that is halfway between the light vector and the view

vector:
H=(L+V)/|L+V|

In addition to being easier to compute than R, it is computed less often. The halfway vector is computed
only when the viewer moves or the light moves. You can use the halfway vector to approximate the

specular reflection of every surface in the scene using the following revised specular equation:

Cr = C_.C(H*N)"

32

The rationale behind the halfway vector approximation is that the halfway vector represents the surface
normal that would yield the most reflection to the viewer. Therefore, as the surface normal approaches
the halfway vector, the amount of reflected light increases. This is the dot product in action! Figure 4.4

shows the graphical representation of the two equations.

Figure 4.4: Specular lighting with (a) full method and (b) halfway vector approximation.

Figure 4.5 shows how specular highlights affect the scene. Figure 4.5a shows the diffusely lit sphere
from 4.3b, 4.5b shows the same scene with added specular highlights, and 4.5¢c shows just the specular

component of the scene.

Figure 4.5: Specular lighting: (a) none, (b) added specular, (c) specular only.

Like the other lighting models, the output of the specular lighting calculations is dependent on the
specular color of the object. For most objects, this is white, meaning that it reflects the color of the light
as a shiny surface would. This will yield good results for most objects, although some materials may

have colored specular reflections.

Other Light Types

So far, | mentioned only ambient lights and directional lights where light intensity is a function of the
angle between the light and the surface. Some lights attenuate, or lose intensity, over distance. In the
real world, all lights attenuate over distance, but it is sometimes convenient and computationally
advantageous to ignore that. For instance, sunlight attenuates, but for most objects, their relative
distance is so small compared with their distance from the sun that you can ignore the attenuation factor.
For a flashlight or a torch in a dark cave, you should not ignore the attenuation factor. Consider the
flashlight and torch two new types of lights. The torch can be modeled as a point light, which projects
light in all directions and attenuates over distance. The flashlight can be modeled as a spot light, which
projects light in a cone that attenuates over an angle. Spot light cones consist of two regions: the umbra,

or inner cone where the light does not attenuate over the angle, and the penumbra, the outer ring where

33

the light gradually falls off to zero. Figure 4.6a shows a scene lit with a point light. Notice the light
intensity as a function of distance. Figure 4.6b shows the same scene lit with a spot light. The umbra is

the central, fully lit region, and the penumbra is the region where the intensity falls to zero.

L I
|
T

Figure 4.6: Attenuated lights.

The three types of lights I've discussed are enumerated in Direct3D as D3DLIGHTTYPE. When deciding
which type to use, you balance the desired effect, the desired quality, and the computational cost.
Directional lights are the easiest to compute but lack the subtleties of attenuated lighting. Point lights
look a little bit better but cost a little more (and might not be the desired effect). Spot lights are the most
realistic directional light but are computationally more expensive. | discuss these lights in depth in later

chapters when | look at the implementation details.

Putting It All Together with Direct3D

Although I've described each lighting component separately, you usually use them together to obtain
the complete look of the object, as shown in Figure 4.5b. The combined result of all three lighting

models is the following equation:
Cr = Cg * CLambientyCa * 2 Cldirectionan(Co(N-L) + Cs(H'N)P)

This equation shows that the final output color of a given surface is the emissive color, plus the effects
of ambient lighting, plus the sum of the effects of the directional lighting. Note that you could drop some
components if there were no emissive color of if there were no ambient lighting in the scene. Also note
that the computational cost of lighting increases as the number of lights increases. Careful placement
and use of lights is important. There is also a limit to how many lights are directly supported by the

hardware.

In later chapters, you will do most of your lighting in vertex shaders and pixel shaders because that will
give you a lot of flexibility. However, it's important to spend a little time talking about the kinds of lights
supported by the DirectX 8.0 API. In Direct3D, lights are defined by the D3DLIGHTS structure described
in Table 4.1.

Table 4.1: Members of the D3DLIGHT8 Structure

Member Data Type Comments

Type D3DLIGHTTYPE Type of light used

34

Table 4.1: Members of the D3DLIGHTS8 Structure

Member

Data Type

Comments

(directional, point, or

spot).

Diffuse

D3DCOLORVALUE

The diffuse color
emitted by the light,
to be used in the

lighting calculation.

Specular

D3DCOLORVALUE

The specular color
emitted by the light,
to be used in the

lighting calculation.

Ambient

D3DCOLORVALUE

The ambient color
emitted by the light,
to be used in the

lighting calculation.

Position

D3DVECTOR

The position of the
light in space. This
member is ignored if
the light type is

directional.

Direction

D3DVECTOR

The direction the
light is pointing. This
member is not used
for point lights and
should be nonzero
for spot and

directional lights.

Range

FLOAT

This is the maximum
effective range for
this light and is not
used for directional
lights. Because of
the usage, this value
should not exceed

the square root of

35

Table 4.1: Members of the D3DLIGHTS8 Structure

Member

Data Type

Comments

the maximum value

of a FLOAT.

Falloff

FLOAT

This member shapes
the falloff of light
within the penumbra.
A higher value
creates a more rapid
exponential falloff. A
value of 1.0 creates
a linear falloff and is
less computationally

expensive.

AttenuationO,
Attenuation1,

Attenuation2

FLOAT

The three
attenuation
members are used
as inputs to a
function that shapes
the attenuation curve
over distance. The
function is Atotal = 1
/(A0 + A1D +
A2D2). You can use
this to determine
how the light
attenuates through
space. Typically, A0
and A2 are zero and
A1 is some constant

value.

Theta

FLOAT

Angle (in radians) of
the umbra of a spot
light. This must not
exceed the value of
Phi

Phi

FLOAT

Angle (in radians) of

36

Table 4.1: Members of the D3DLIGHTS8 Structure

Member Data Type Comments

the penumbra.

| go into more detail about using the D3DLIGHTS8 structure after you set up your rendering device in
code. Because most of the lighting in later chapters will be implemented in your own shaders, the table
provides a good reference for the types of parameters your shaders will need.

Shading Types

Earlier, | told you to think of an object as a set of surfaces, and throughout this chapter I've talked about
how light and color affect a given surface. It's now time to take a look at how those individual surfaces
come together to create a final shaded object. For all of the lighting calculations so far, I've described
equations in terms of the surface normal because objects in computer graphics consist of a finite
number of surfaces. When those surfaces are rendered together, a final object is constructed. Different
types of shading determine how those surfaces appear together. Direct3D has two usable shading
modes, which are enumerated in D3DSHADEMODE. The two modes are D3DSHADE FLAT and

D3DSHADE GOURAUD.

Flat shading, shown in Figure 4.7, is the simplest type of shading. Each surface is lit individually using
its own normal vector. This creates a rough, faceted appearance that, although useful for disco balls, is

unrealistic for most fashionable objects.

Figure 4.7: Sphere with flat shading.

This shading method does not take into effect that individual surfaces are actually parts of a larger

object. Smooth shading types, such as Gouraud shading, take into account the continuity of a surface.

Most 3D implementations use Gouraud shading because it gives good results for minimal computational
overhead. When setting up surface data for use with Gouraud shading, you assign normals on a per-

vertex basis rather than a per-surface basis. The normal for each vertex is the average of the surface

37

normals for all surfaces that use that vertex. Then, as each surface is rendered, lighting values are
computed for each vertex and then interpolated over the surface. The results are the smoothly shaded

objects shown in previous figures.

Gouraud shading is not the only method of smooth shading, but it is one of the easiest. In later chapters,
| describe more shading methods and provide the implementation details.

In Conclusion...

In this chapter, you've taken a look at the basic ideas of color and light and how to use them to create

3D objects. These are only the most basic concepts, and later chapters delve into the actual code and

implementation details of everything described here. | also describe many other types of lighting and

shading, ranging from more realistic depictions of actual materials to nonrealistic cartoons. As with the

other chapters in this section, these ideas are continually revisited and reinforced as the chapters go on.

In the meantime, you should remember the following concepts:

" All chapters deal with 32-bit color, although the device can handle displaying lower bit depths if
necessary.

" For calculations, all colors are normalized to the range of 0.0 to 1.0 unless otherwise noted.

] You can use ambient lighting in moderation to add an overall light level to the scene.

= You can use diffuse lighting to shade most materials.

= You use specular lighting for shiny materials.

= Directional lights only use angles to calculate lighting and do not attenuate.

= Point lights radiate light in all directions and attenuate over distance.

= Spot lights emit light in a cone and attenuate over both distance and angle (within the penumbra)
and are computationally expensive.

= The D3DLIGHTS structure encapsulates many of the parameters needed for the lighting equation.

= Gouraud shading uses averaged surface normals and interpolated lighting values to produce

smoothly shaded objects.

Chapter 5: A Look at the Graphics Pipeline

Overview

Back in the days of DOOM and Quake, almost all the steps in 3D rendering were performed by the CPU.
It wasn’t until the final step that pixels were actually manipulated on the video card to produce a frame

of the game. Now, current hardware does almost all the rendering steps in hardware, freeing up the
CPU for other tasks such as game logic and artificial intelligence. Through the years, the hardware
support for the pipeline has both deepened and widened. The first 3D chips that came onto the market
shortly after Quake supported the rasterization and then the texturing. Later, chips added hardware
support for transformation and lighting. Starting with the geForce3, hardware functionality began to
widen, adding support for vertex shaders and pixel shaders, as well as support for higher-order surfaces
such as ATI's TRUFORM.

38

Throughout this book, the chapters stress various performance pitfalls and considerations for each of
those steps. To fully understand the best way to deal with the hardware, you need to understand what
the hardware is doing. This chapter will introduce the following concepts.

= The Direct3D rendering pipeline.

= Vertex data and higher-order surfaces.

. Fixed-function transform and lighting.

" Vertex shaders.

= The clipping stage.

= Multitexturing and pixel shaders for texture blending.

. The fog stage.

= Per pixel depth, alpha, and stencil tests.

. Output on the frame buffer.

] Performance considerations.

The Direct3D Pipeline

Figure 5.1 shows the different steps in the 3D pipeline.

| Systam Mamory |
T

]
Vertex Data — Surface Data
i
Transform
And Venex Shader
Lighting
r r
C i G L
1RNg Geometry Pipeling
ultitexturing Fixal Snader |
¥ 4
[':1'5'“] Texiure Blanding
¥
| StencilDiepthialpha Tests |
|___Frame Buffer | Rastenization

Figure 5.1: The Direct3D rendering pipeline.

Before 3D data moves through the pipeline, it starts in the system memory and CPU, where it is defined
and (in good practice) sent to either AGP (Accelerated Graphics Port) memory or memory on the video
card. Once the processing actually starts, either it is sent down the fixed transformation and lighting
pipeline or it is routed through a programmable vertex shader. The output of both of these paths leads
into the clipping stage, where geometry that is not visible is discarded to save processing power by not

rendering it.

Once the vertices are transformed, they move to the blending stage. Here they either move through the
standard multitexturing pipeline or move through the newly supported pixel shaders. Fog (if any) is

added after these stages.

39

Finally, the data is ready to be drawn onto the screen. Here, each fragment (usually a pixel) is tested to
see whether the new data should be drawn over the old data, blended with the old data, or discarded.
Once that’s decided, the data becomes part of the frame buffer, which is eventually pushed to the

screen.

That was a whirlwind tour of the pipeline; now | break down each section into detail.

Vertex Data and Higher-Order Surfaces

Vertices are the basic geometric unit, as | discuss in exhausting detail in later chapters. Each 3D object
consists of one or more vertices. Sometimes these vertices are loaded from a file (such as a character
model); other times they are generated mathematically (such as a sphere). Either way, they are usually

created by some process on the CPU and placed into memory that is easily accessible to the video card.

The exception to this is the use of various forms of higher-order surfaces such as N patches in DirectX
8.0 or TRUFORM meshes on ATI hardware. These surfaces behave differently in that the hardware
uses the properties of a rough mesh to produce a smoother one by creating new vertices on the
hardware. These vertices do not have to be moved across the bus, enabling developers to use
smoother meshes without necessarily decreasing performance. | discuss higher-order meshes in a later
chapter when | go over exactly how to create them, but it's important to realize they are really the only

mechanism for creating geometry in the hardware.

Higher-order Surfaces

A higher-order surface is a surface that is defined with mathematical functions rather than individual
data points. If they are supported by the hardware, they allow the video card to create vertices on
the card rather than on the CPU. This can streamline the process of moving geometry around the

system. They can also be used to smooth lower resolution models. Chapter 21, “Bezier Patches,”

demonstrates a technique for manipulating your own higher-order surface with a vertex shader.

The Fixed-Function Transform and Lighting Stage

By now I've spent a lot of time talking about the matrices used for transformations and the mathematics
of lighting. Before the advent of hardware transformation and lighting (T&L), all of that math was done
on the CPU. This meant that the CPU had to juggle Al, game logic, and much of the grunt work of
rendering. Hardware T&L moved the math to the card, freeing up the CPU. The purpose of the T&L
stage is to apply all the matrix operations to each vertex. Once the vertex is transformed, the card can
calculate the lighting with any hardware lights defined by calls to the API. This is one of the reasons that
there is a limit on the number of hardware lights. This stage of the pipeline must manage them all
correctly. A new alternative to the fixed-function pipeline is the idea of a hardware-supported vertex

shader.

Vertex Shaders

Even though | don’t look at vertex shaders in depth for several more chapters, | can’t talk about the
pipeline without talking about this new innovation. Vertex shaders add an incredible amount of flexibility
to the pipeline. Before vertex shaders, hardware T&L could handle transforming the data according to
the standard transformations, but it couldn’t handle arbitrarily changing vertex data in hardware.
Therefore, animations, such as moving characters with bulging muscles, had to have the geometry
manipulated on the CPU and then moved to the card. Doing this for each frame of a game can be very
costly. Vertex shaders allow the developer to write short programs that run and manipulate data on the

hardware.

In a way, the name “shader” can be confusing. Vertex shaders can shade geometry in the lighting sense
by calculating the lighting equations per vertex, but they can also manipulate all the vertex data. You

can use this manipulation for everything from geometric manipulation to setting new texture coordinates.
The power of a shader goes far beyond the lighting definition of shading. Figure 5.2 shows a shader that

manipulates the actual geometry of an object.

Figure 5.2: A sample vertex shader.

Depending on the complexity of the shader, animations might still have an associated performance cost,

but this is usually lessened by the fact that data does not have to move across the bus.

This raises another point. Theoretically, a very fast CPU may be able to transform vertices faster than
the video card. However, it is becoming apparent that a lot of performance cost is incurred from moving
data to and from the card. Unless you have the combination of a very fast CPU and an old video card,

it's best to maximize the amount of processing done on the graphics card.

It's important to note that, unlike higher-order surfaces, vertex shaders cannot create or destroy vertices.
Part of the reason for this is that vertex shaders were written to be capable of running in parallel. The
ability to create or destroy vertices would create interdependencies between vertices, which would

violate this constraint.

41

Also important to note is that if you use vertex shaders, they replace the fixed-function pipeline.
Therefore, you must implement all lighting, transformation, and so on in the shader if your application
still needs those features. For instance, if you write a shader to warp geometry, but still want diffuse
lighting, you must add the diffuse-lighting calculation to the vertex shader. | explain this more when you

actually start working with shaders.

The Clipper

After the vertex is transformed in either the fixed-function pipeline or a vertex shader, it is passed along
to the clipper. Here the hardware makes decisions about what geometry should be carried onto the next
stages. For instance, if after transformation a piece of geometry is behind the camera, there’s no reason
to continue processing it. You can throw away anything the viewer cannot see. This is one way a shader
could destroy vertices: The vertices could be transformed in such a way to move them behind the
camera. This step allows the hardware to pare away useless geometry before making the relatively

costly step of texturing.

Multitexturing

The texturing stage is where geometry can move beyond the boredom of simple lit triangles to be
covered with exciting textures—assuming, of course, that the developer wants it that way. In this stage,
the number of textures you can apply in a single pass is a function of how many texture pipelines the
chip supports. For instance, on geForce3 class cards, the developer can specify up to four different
textures to use when texturing a piece of geometry. That number will only increase as the hardware

gets better.

Multitexturing is important in creating realistic scenes. One of the more common uses of multitexturing is
lightmapping. This technique involves using one or more textures to define the overall look of a given
object and another set of textures to map different lighting effects on the object. If used effectively, this
technique can create high-quality lighting effects with precomputed lighting textures. | discuss
multitexturing and the associated API calls in depth in later chapters.

Pixel Shaders

Pixel shaders, like vertex shaders, are a new feature in 3D hardware. Whereas vertex shaders create
the opportunity for more flexibility with geometry, pixel shaders allow for more flexibility with pixels. This
flexibility allows for interesting effects in the way that individual pixels or texels (texture elements) are
selected, blended, or rendered. You can use pixel shaders to perform per-pixel lighting on simple

geometry, as shown in Figure 5.3.

42

Figure 5.3: A sample pixel shader.

You can also use them to retrieve values from complex functions encoded into textures, thereby
creating the look and feel of materials such as cloth and hair. | go into many more pixel-shader

examples throughout the coming chapters, ranging from per-pixel lighting to image processing.

Fog

The final step in determining what a given pixel element looks like is fog. Fog can be based on distance,
elevation, or anything else if you are using a vertex shader. Fogging geometry over distance can help
provide depth cues to players looking into a scene. Fogging based on elevation can help produce misty
bogs or cloudy mountains. In many cases, fog is used to hide the limit to how far the player can see.
After a certain distance, items become foggy until they eventually fade away entirely. Once they go
beyond the viewing range, the clipper can remove them entirely. Adding fog to a scene ensures that

objects don’t just disappear at a certain distance.

Depth, Stencil, and Alpha Tests

Each of these tests deserves a full chapter to adequately explain their power. In later chapters, | discuss
these tests in depth when | have more context for them. From a pipeline perspective, these tests
represent the final gauntlet a pixel must run before it gets to the screen or is thrown away. You can
enable or disable each of these tests, which involves comparing a given pixel against the current
contents of the frame buffer. The depth test looks at the depth of the new pixel and checks whether it is
closer to the viewer than the current pixel in that place. If it is, it replaces the pixel. If not, it goes the way
of the Dodo. The stencil test is a binary operation. The developer can define test parameters and data in
the stencil buffer. If the new pixel doesn’t pass the test, the current pixel is not changed. This is shown

in Chapter 39 in Figure 39.2. Alpha tests are more flexible. In its most common usage, the alpha test

defines how the new pixel blends with the old pixel to create effects such as semitransparent geometry.
However, you can set the alpha blending options in many different ways to create other effects. Later

chapters provide more in-depth explanations of each of these tests.

The Frame Buffer

43

Every pixel’s goal and every vertex's dream comes down to the frame buffer. Typically, this is a back
buffer, which sits in video memory waiting to be pushed to the front buffer and therefore to the screen.
After every object in the scene is rendered, all the pixels are processed, and all the tests are passed,

the code makes one function call to flip the buffers and happiness fills the screen (in most cases).

Sometimes the frame buffer does not get sent directly to the monitor at all. Another powerful technique
is to render everything to a texture, which you can then use on a piece of geometry. One simple
example is a mirror. The program can render the scene once from the viewpoint of the mirror using a
texture as the render target instead of the frame buffer. Then, without showing that rendering on the
screen, the program can swap the texture out of being the render target and render the scene from the
viewer’s viewpoint, texturing the mirror with the previously created texture. You can create many effects

this way, but I'm getting ahead of myself.
Performance Considerations

One of the points of knowing all this background is to understand that the pipeline is full of bottlenecks
waiting to happen. A chain is only as strong as its weakest link, and every stage in the pipeline is a
potential weak link. Looking back, before 3D cards, video cards were mostly measured by their fill rate.
Fill rate is basically the measure of how fast the card can paint pixels on the screen. When cards were
slower than the CPU feeding them, applications were “fill rate limited.” When fast 2D cards became
available, the CPUs could not process the geometry fast enough, and the applications could be
“geometry limited.” Here are a couple things to watch out for:

" Be aware of how often you are manipulating data on the CPU. It doesn’t matter how fast your
CPU or GPU is if the path between them is slow to traverse. The system bus is very slow
compared to the data paths through the card itself.

] Be aware of how much geometry is actually being pumped through the geometry pipeline,
including geometry that you don’t necessarily see. Because of clipping, you might see only a little
simple geometry on the screen, but there might be a lot running through your shader.

= Be aware of your texture size. Cards are increasingly limited by their ability to move textures from
memory to the screen. The processors are fast enough that the speed of the memory is actually the
bottleneck! Don’t use enormous textures if you don’t have to.

= Be aware of what your texture blending is doing. Make sure you're not doing more than you have
to.

. Be aware of which tests you have enabled. If you don’t need the depth test, make sure it is
disabled.

| go into these and many other performance considerations in the following chapters. The performance
point to remember here is that you need to keep in mind each phase of the pipeline has its own
performance characteristics and considerations. If your card says that it can render 100 million polygons,
but you are only getting 10 million, you may be limited by something you’re doing with textures. Knowing
how the pipeline works and how hard your application hits each part will help you sort out performance

problems.

44

In Conclusion...

Like the other chapters in this part, this chapter should provide a basis for understanding the later
chapters. Understanding the pipeline will provide a basis for working with performance issues and
efficiency issues that can arise with some of the more complex techniques. Many of the concepts in this
chapter have been vague, pending in-depth explanations in later chapters. You can’t fully explore the
pipeline until you begin writing code that uses it! However, once you do get into the code, | continually
refer to many of the points in this chapter. The actual code begins next chapter, but first, let's recap with
some points to remember:
] Geometry data can be generated on the CPU and passed to the card or created on the card with
higher-order surfaces.
] Fixed-function hardware T&L provides all the basic transform and lighting capabilities.
= Vertex shaders provide more flexibility with geometry manipulation than the fixed-function pipeline.
However, once you use vertex shaders, you must implement all required features in the shader.
= You can use multitexturing to blend textures for many effects. However, you should consider
hardware limitations when you need many textures.
= Pixel shaders provide more flexibility for manipulating pixels and texels.
" You can use fog to give the viewer depth cues and also hide the effects of the clipper.
= The depth, stencil, and alpha tests conspire to determine whether a given pixel gets to the monitor.
= Consider the pipeline a chain with several potential weak links. Knowing how your application

affects each link will create a better understanding of how to effectively use the available hardware

Part ll: Building the Sandbox

Chapter List

Chapter 6: Setting up the Environment and Simple Win32 App

Chapter 7: Creating and Managing the Direct3D Device

Okay, enough of the theory, it's time to write some code! Before you get started with actual graphics
techniques, this section has a couple of chapters that implement the framework that will be the
“sandbox” you'll play in. You have many excellent resources for frameworks using the DirectX API,
including books, online resources, and an excellent framework in the DirectX SDK itself. These chapters

outline the basics of a DirectX graphics framework and explain the theory behind the SDK framework.

Here’s a breakdown of the chapters in this section:
] Chapter 6, “Setting Up the Environment and Simple Win32 App,” is aimed at users who have little

experience with the DirectX SDK. You will take a look at the SDK itself, set up the environment with

the correct paths, and develop a simple Win32 application.

45

= Chapter 7, “Creating and Managing the Direct3D Device,” builds on the previous one, introducing

the Direct3D device that is the heart of your framework. | talk about how to create the device, use it,
and destroy it. You will also extend your framework to let you easily plug in new features in

later chapters.

Chapter 6: Setting Up the Environment and Simple
Win32 App

® Download CD Content

Overview

If you already have experience working with the DirectX SDK, much of this chapter might be old news to
you. However, it's best to be familiar with this chapter because much of the setup here carries over to all
the chapters. This chapter assumes that you already have the DirectX SDK in your possession. | will
introduce a simple application framework based on the following concepts:

" Dealing with the DirectX SDK.

] Setting up a build environment.

" Building a simple Win32 application.

] Compiling and running the application.

A Look at the SDK

The first thing you'll need to do is install the SDK. | deal with many SDKs, so | have a directory called
c:\SDKs where | install all my SDKs. Therefore, the path for my SDK is c:\SDKs\DX8SDK. However, I'm
in no position to tell you how to use your hard drive, so install it anywhere you want. Please keep in
mind that if you downloaded the SDK, you might need to first unzip it and then install it. Also, for your
purposes, | am only talking about the VC++ part of the SDK. If you installed other parts, such as the
Visual Basic samples, your paths might be slightly different. In any case, | simply refer to the installed

path as the SDK path, wherever yours may be.

After you've installed the SDK, you have the following file structure:
\bin This folder contains precompiled binaries and tools.

\DXUtils The most useful ones are the DXCapsViewer, which shows device
capabilities, and DXTex, a texture tool that you can use to create textures in

the .dds format.

\Xfiles This folder contains the tools you’ll use to convert from common 3D file

formats to the .X file format used by DirectX Graphics.

\Doc This folder contains the SDK documentation. This is an extremely valuable

resource.

46

\DirectX8

\DirectXEULASs

\Include

\Lib

\Samples\Multimedia

\Common

\Direct3D

The most useful file here is the precompiled help file for the SDK itself. Some
books explain the API by simply rehashing the documentation. I've tried to
give alternative explanations, so read the documentation for another

viewpoint.

This folder includes the end user license agreements. It’s probably a good
idea to read and understand these documents because they might affect how

you distribute your work.

This folder contains all the header files needed to compile the basic SDK
examples. In the next section, | talk about how to set up your development

environment to use this directory.

These are all of the library files for DirectX. You will link with some of these
when you compile. Each sample source file will include a list of the files that

must be linked in by the compiler.

This directory contains the sample code included with the SDK. These
samples are valuable in understanding the basics of using DirectX. For your

purposes, you'll be using only two of the subfolders.

This directory includes subdirectories for the header files and source files
needed to use the application framework developed by the DirectX team. This
framework is useful, but this book implements an alternative simple
framework to better demonstrate the concepts. As you become more familiar
with the concepts, you might want to look at the more advanced framework to
see the added functionality. In practice, you will probably develop your own

framework that best suits your particular needs.

This directory contains the source code for all the Direct3D sample
applications. Although this book does not discuss those samples specifically,
many of the concepts are similar. These samples are an excellent resource to

see how someone else did something.

Although | do not really discuss the SDK samples or framework specifically, it's worthwhile to explore

the SDK and get to know the resources available to you. Frequently, people ask questions that are

readily answered by the SDK. The SDK is one of the best resources available to you, so getting to know

your way around it is important.

Setting Up the Environment

Once the SDK is installed, it's time to set up your development. | will explain how to get things started in

Visual C++ 6.0. If you use a different IDE, follow its instructions for modifying include and library paths.

We are essentially setting up the paths that the IDE uses to find files.

47

Open VC++, go to Tools, Options, and click on the Directories tab. Here you can choose which
directories are being set. You'll start with the directories for the Include Files. Figure 6.1 shows the

dialog. Add the following directory to your include path setting:

EETEEEE 21x]
Edie | Tabe | Debug | Comosiblty | Bukd Diecioses | | [2]]
Flatior
= =l
[Dwectones

ShudcWTINMPCUNCLLIDE
Shudo W THENATLYNCLUDE

[ox] _cocu |

Figure 6.1: The Options dialog box for include files.

[Your SDK path]\Include

[Your SDK path] is the path in which you put the SDK. This will add the Include directory to the
paths the compiler searches. If you plan to use the "common" framework, you could also add the

following:

[Your SDK path]\Multimedia\Common\Include

Now, select Library Files from the Show Directories For drop-down box. Here you will add the paths for

the library files. Add the SDK path:

[Your SDK path]\Lib

After you set all your paths, you are ready to start coding!

A Simple Win32 Application

You're finally about to write some code. In the following code and throughout the book, the samples are
in C++. This is to make full use of some of the features of D3DX as well as provide some simple
encapsulation. If you are not a C++ expert, there is no need to panic. The chief focus of this book is to
teach graphical concepts, not proper object-oriented programming practice. For this reason, the
samples in the book are designed for readability, ease of understanding, and, in some cases,
optimization from a graphics point of view. My goal is to teach the concepts and allow you to design

your own real “engine” using an architecture that best suits your needs.

As mentioned earlier, the SDK contains an excellent application framework. You are building your own
mostly as a learning exercise. Although the SDK framework is good, it is sometimes a little too complex
for beginners. Building your own lets you have complete control over all the code. If you already have a
framework and you are comfortable with DirectX, you can probably incorporate the later chapters into

your own code. However, all of the samples assume this simple framework.

48

Because you are writing in DirectX, you are writing in Windows. All the code in this book runs on any
version of Windows supporting DirectX 8.0 or higher (W9X, NT4, W2K, WinXP). Unless specifically
stated, “Windows” refers to any version of Windows you're comfortable with. Almost all Windows
applications consist of three basic steps: window creation, event and message handling, and window
destruction. This all begins when the operating system calls a function called WinMain. The framework
has a simple file that contains WinMain. When the OS calls WinMain, it creates an application object
that will handle all the real functioning of the window and, eventually, the rendering. The following
sections discuss the files used in the simple application. These files are located on the CD in a directory
called \Code\Chapter6.

Checking Out Executable.h

® Executable.h is the header file that contains the prototypes for the functions used by the OS to
communicate with the application. Take a look at the important parts.

The following header file contains the definitions of all the basic windows types. It is included with most

Windows applications and you also need it here:

#include <windows.h>

The following function is called by the OS to start the application. You will use it to create an application

object that will handle window creation and rendering:

INT WINAPI WinMain (HINSTANCE hInst, HINSTANCE, LPSTR, INT);

The OS calls this function every time there is a message to send to the application. Messages are the

mechanism for communicating events, such as mouse clicks, window resizing, or window closing.
LRESULT WINAPI EntryMessageHandler (HWND hWnd, UINT Message,

WPARAM wParam, LPARAM lParam);

® Executable.h is simple but very important because it defines the code called by the OS. In your
simple framework, you are going to create a class that handles all the actual application processing. For

right now, this will be a simple wrapper, but you will extend it in a later chapter.

Checking Out Application.h

® pplication.h contains the class definition for your simple application class. In this chapter, I'm more

concerned about the basics of setting up a Windows application, so | don’t talk about rendering code

until the next chapter. For now, here is the simple definition from @ Application.h:

Again, include windows.h for the definitions of some basic Windows data types:
#include <windows.h>

class CHostApplication

49

The next two functions are the constructor and destructor. They are called when an object is first

created and later when it is finally destroyed. This is typically where any initialization or cleanup occurs:
public:
CHostApplication();

virtual ~CHostApplication();

The following function is the same as the message handler defined in ® Executable.h. In fact, as the

next sections show, EntryMessageHandler simply calls MessageHandler to allow the application

class to decide how messages are handled:

LRESULT WINAPI MessageHandler (HWND hWnd, UINT msg, WPARAM wParam,

LPARAM lParam) ;

This function starts the actual processing:

void Go () ;

This is the handle to the application window. When the window is created, this is the identifier the
application uses whenever it needs to change the windows or refer to it for any reason. These last three
variables are marked as protected to protect them from possible misuse by other code. Only this

class or subclasses of this class can directly modify them:
protected:

HWND m_ hWnd;

These are the basic window size parameters. You can modify them to change the default window size

for an application.
long m WindowWidth;
long m WindowHeight;
bi
This defines your application class. This class will be the basis for your applications in the coming
chapters. In the next chapter, | expand the class definition a little to accommodate the actual Direct3D

device, and later chapters extend the class to handle the specific needs of each technique. To see how

the class is actually used, read on.

Checking Out Executable.cpp

® Executable.cpp contains the actual code for WinMain and the message handler. Its primary use is to

create an instance of the application object. Here is a breakdown of the code:

50

Include the header file | discussed earlier. This also means that all the definitions from windows.h are

included:

#include "executable.h"

This adds the class definition, which is needed so that you can create the object. Note that as you

extend the application class for each chapter, you will include the extended classes header here:

#include "application.h"

You also create a static global pointer to an application object. In general, it's considered bad practice to
create global variables. However, this variable must be accessible to WinMain and
EntryMessageHandler, s0 in this case, it's a reasonable exception. Note that the specific type of this

pointer changes in later chapters:

static CHostApplication *g pHostApplication = NULL;

When WinMain is called, it simply creates a new instance of the application object and calls the Go
function to tell the application to actually start processing. This function does not return until the

application is ready to quit. Therefore, when you return from this call, it's time to end the program:

INT WINAPI WinMain (HINSTANCE hInst, HINSTANCE, LPSTR, INT)

{
g pHostApplication = new CHostApplication();

g pHostApplication->Go();

This deletes the application object and frees up any memory associated with it. This also calls the

destructor, which cleans up any internal data:

delete (g pHostApplication);

Finally, when you’re done processing and everything is cleaned up, you exit the function, ending the

program:

return 0;

The following is the message-handler function that the operating system calls when it wants to pass a
message to the application. This function passes the message along and lets the application object do
the actual processing. The results are then returned back to the OS. In general, it's bad practice to use
a pointer without checking first to see whether it's valid. However, as you have things set up, the object
will always be created before messages are sent, and the application exits after the pointer is deleted,

so you’re probably okay. But in general, using pointers blindly could get you into trouble.
LRESULT WINAPI EntryMessageHandler (HWND hWnd, UINT Message,

WPARAM wParam, LPARAM lParam)

ol

return g pHostApplication->MessageHandler (hWnd, Message,

wParam, lParam);

As you can see, the code in ® Executable.cpp is just a pass through to the application object. So let’s
look at ® Application.cpp for the final piece of the puzzle.

Checking Out Application.cpp

The following code shows how to create a basic windowed application. Currently, the application only

has the most basic functionality; later you will add code to add Direct3D functionality.

Include the header files. You include ® Application.h because it defines the contents of this file. You
include ® Executable.h because the application needs to know the name of EntryMessageHandler

when it creates the window:
#include "Executable.h"

#include "Application.h"

The constructor is simple. It initializes the default size of the window. Child classes can reset these

values in their constructors to override the default values:

CHostApplication: :CHostApplication ()

{
m_WindowWidth = 640;

m WindowHeight = 480;

The Go function is where the magic unfolds. Here, the window is created, and messages are pumped
through the application. When the application receives a message to quit, the function returns and

everything ends:

void CHostApplication::Go ()

{

The operating system uses this structure to define the type of Windows application you want to create.
Note that the “class” here is different from the object-oriented definition of class. For your purposes,
most of these parameters are not useful (hence the many NULL parameters). It is important to point out
that EntryMessageHandler is your globally defined message handler. Adding it to the window class
tells the OS what function to call to handle messages. Once this class is registered, you use it to create

your window:

52

WNDCLASSEX WindowClass = {sizeof (WNDCLASSEX), CS CLASSDC,
EntryMessageHandler, 0, O,
GetModuleHandle (NULL), NULL, NULL, NULL,
NULL, "Host Application", NULL};

RegisterClassEx (&WindowClass) ;

Here, you create the window. Among other things, you pass the name of your recently created window
class and your default width and height. If everything goes well, you are rewarded with a window

handle:
m _hWnd = CreateWindow ("Host Application", "Host Application",
WS OVERLAPPEDWINDOW, 0, 0, m WindowWidth,
m WindowHeight, GetDesktopWindow(), NULL,

WindowClass.hInstance, NULL) ;

If you have successfully created the window, make it visible. If for some reason the window was not

created, there is no point in going on. You might as well quit now:
if (m_hWnd)
ShowWindow (m_hWnd, SW_SHOW) ;
else

return;

This is commonly referred to as a message pump. The while loop continues to pull messages from the
message queue until a quit message is received. The message pump ensures that messages continue
to move through the system with your handler processing the messages. When the pump receives a

message to quit, the while loop ends and the function returns:
MSG Message;
PeekMessage (&Message, 0, 0, 0, PM REMOVE) ;

while (Message.message != WM QUIT)

TranslateMessage (&Message) ;
DispatchMessage (&Message) ;

PeekMessage (&Message, 0, 0, 0, PM REMOVE) ;

The destructor makes sure that the window itself is destroyed if it exists:

53

CHostApplication::~CHostApplication ()
{
if (m_hWnd)

DestroyWindow (m_hWnd) ;

The following is the actual message handler. Messages arrive here after being passed through the
global message handler. The switch statement allows you to choose which messages you want to
respond to. For now, you care only about the quit message, and all others are passed to the default
message handler. The default handler handles the basic window operations, such as resizing, moving,

and so on.

LRESULT WINAPI CHostApplication::MessageHandler (HWND hWnd,

UINT Message, WPARAM wParam, LPARAM lParam)

switch (Message)
{
case WM DESTROY:
PostQuitMessage (0) ;
return 0;

}

return DefWindowProc (hWnd, Message, wParam, lParam);

That'’s all the code; now you can compile and see what it does.

Compiling and Running the Simple Application

For VC++ users, the workspace and project files are included on the CD. For others, simply compile the
source files, and link with kernel32.lib and user32.lib. After compiling, run the application. The result

should be similar to Figure 6.2.

54

* Hosi Apphcabisn B =lol =]

[Walug I]— d

1

Bl
s

Figure 6.2: A very simple application. Note the painting issues.

Notice that the window doesn’t repaint. This is not a bug. Usually, Windows applications respond to a
paint message when they need to repaint themselves. Because you will eventually be “painting” with a
Direct3D device, | have omitted the code that would have painted the window. In the next chapter, you'll
finally add the actual Direct3D code. Figure 6.2 makes the point that your window will not paint itself in

the normal Windows way. Instead, you’ll paint everything with the Direct3D device.

Figure 6.3 shows how this simple application operates. Notice that there is no code for drawing anything.

Yet....

55

Register Window Class

Craate Window

Process Messages -

Quit Message? ho

End Application

Figure 6.3: The lifespan of the simple application.

In Review: Why Did We Do It That Way?

If you were writing your own application, you’d probably do things differently. In this first chapter, you're
just trying to get the basic Windows functionality out of the way. In later chapters, CHostApplication
takes care of all the basics, leaving you free to concentrate on the graphics. You placed WinMain in a
separate file from the application class because if it were in the same file, it would complicate things
once you started subclassing CHostApplication. Keeping them separate means that you can
change which class WinMain instantiates without changing the code in ® pplication.cpp. All of these
reasons are based on the fact that you are setting things up to be a framework for many different
applications. If you are writing one application, you can consolidate some of these functions.

In Conclusion...

In this chapter, you have concentrated solely on setting up a simple Windows application. For
experienced programmers, this chapter is purely review and an introduction to the basic framework. For
others, this chapter has touched on the most basic aspects of Windows programming. In the next
chapter, you will expand the CHostApplication class and add actual Direct3D code. For now, review
some of the key points of this chapter:

] The SDK contains a well-organized application framework. You are creating your own framework

so that | can easily explain some of the key concepts.

56

The SDK also contains many samples that are helpful to the beginner.

= The operating system calls WinMain to start an application. Your framework uses WinMain to
create an instance of an application class.

= CHostApplication provides basic functionality. In later chapters, you’ll subclass
CHostApplication to suit your needs.

] Windows applications receive input and commands via messages. Message-handling functions
process those messages.

] The application in this chapter is just a precursor to the actual Direct3D-enabled application. Read

on for more!

Chapter 7: Creating and Managing the Direct3D
Device

® Download CD Content

Overview

The point of the previous chapter was to get the basics of your Windows application out of the way so

that you could focus entirely on Direct3D in this and every other chapter. Before | can talk about vertices
and polygons, | need to talk about the Direct3D device and how to deal with it properly. All the code in
this chapter comes from the \Code\ChapterQ7 directory on the CD. Before rendering anything, | need to
cover the following topics:

" Explaining the Direct3D device.

" Creating a D3D object.

- Querying device capabilities.

" Creating a Direct3D device.

] Resetting a lost device.

] Destroying a device.

] Rendering with a device.

" Clearing the device.

] Building the new concepts into the application framework.

What Is the Direct3D Device?

Every graphics API has a basic entity that maintains the overall state of the drawing functions. If you're
programming with the Windows GDI, it's the device context (DC). If you’re programming in Java, it’s the
Graphics object. With Direct3D, it's a Direct3D device or in APl terms, IDirect3DDevice8. The
device manages and maintains everything from allocating texture memory to transformation matrices to
blending states. Many methods of IDirect3DDevice8 handle these tasks, but | do not go through a

laundry list of them here. Instead, each chapter presents these methods in context—so when | talk

57

about textures, | talk about the texture-management methods of IDirect3DDevice8. In this chapter, |

talk about how the device itself is created and maintained.

Table 7.1 shows the three basic types of devices.

Table 7.1: D3DDEVTYPE Definitions

Device Type Comments

D3DDEVTYPE HAL A HAL (hardware abstraction layer) device uses hardware

for rendering.

D3DDEVTYPE REF A REF (reference) device is implemented in software but

uses specialized CPU optimizations when available.

D3DDEVTYPE SW A SW (software) device uses a third-party software

renderer if one has been made available.

Of the three types, the HAL device is by far the most useful because it takes advantage of hardware
acceleration. The reference device is supplied to serve as a fully featured reference design for
developers. This means that it emulates all possible DirectX features in software, but at a significant
performance penalty. The software device can use third-party software renderers, but there are
currently none available. The samples in this book run well with the HAL device on all DirectX 8.0
compatible cards. If you do not have a card that supports higher-level features such as pixel shaders, it

might be necessary to use the reference device to see the samples in action.

In this chapter, you will add device maintenance features to the existing CHostApplication class.
Note that you are not creating a subclass; you are adding more basic features to code that you started
in the last chapter. By the end of this chapter, you will have a complete base class on which to base the
code for the different techniques.

Step 1: Creating the Direct3D Object

The first step to creating a Direct3D Device is creating the actual Direct3D object. This object handles
the most basic functions of Direct3D, namely creating the device and providing a way to query the
hardware for capabilities. Creating the Direct3D object is simple: The function takes one parameter that

is defined by the SDK. Here is an example:

LPDIRECT3D8 pD3D = Direct3DCreate8 (D3D_SDK VERSION) ;

Once this object is created, it serves as a gateway to the Direct3D functionality. If you know exactly
what kind of hardware your application is running on, you can blindly create and use a device. For real-
world applications, it is best to learn more about the hardware by using the Direct3D object’s querying
functions.

Step 2: Learning More about the Hardware

58

The Direct3D object includes many methods that you can use to query the capabilities of the hardware.

For now, | focus on the two most frequently used functions, GetDeviceCaps and EnumAdapterModes.

You can use GetDeviceCaps to query the capabilities of each device type. Here is the function

prototype and sample usage:

HRESULT IDirect3D8::GetDeviceCaps (UINT Adapter, D3DDEVTYPE DeviceType,

D3DCAPS8 *pDeviceCaps) ;

D3DCAPS8 DeviceCaps;
HRESULT hr = pD3D->GetDeviceCaps (D3DADAPTER DEFAULT, D3DDEVTYPE HAL,

&DeviceCaps) ;

The first parameter specifies the adapter or video card that is to be queried. | am not going to discuss
multi-monitor systems specifically, so the default adapter is the only one you’ll query. The second
parameter is the device type that you are interested in, and the third parameter is the capabilities
structure that is filled by the function. The capabilities listed in this structure cover all aspects of the
hardware, ranging from the maximum number of lights to the supported vertex shader version. In each

chapter, | talk about how to make sure the device supports a given technique.

If GetDeviceCaps queries the raw capabilities and limitations of the hardware, EnumAdapterModes
queries the possible ways to manage the screen itself. Enumerating the available display modes helps
the application determine which screen resolutions and pixel formats are available for a given device.
To determine the number of available modes to enumerate, the application can call

GetAdapterModeCount. The function prototypes follow:
UINT IDirect3D8::GetAdapterModeCount (UINT Adapter) ;
HRESULT IDirect3D8::EnumAdapterModes (UINT Adapter, UINT Mode,

D3DDISPLAYMODE *pMode) ;

The first parameter is the same adapter identifier used with GetDeviceCaps. The second parameter
identifies which mode is to be queried. If this value is greater than the result of
GetAdapterModeCount, this function fails. The last parameter is a pointer to a display mode structure
that is filled by the function. This structure identifies the width, height, refresh rate, and pixel format for a

given mode.

When used together, GetDeviceCaps and EnumAdapterModes can help you make the most out of a
given piece of hardware and help "future proof" your game. Many older games are still fun to play but
are limited to 640x480, even on high-end cards. In most cases, you should design your game to allow
the user to select from a set of resolutions that the card can support. This allows the card and the user
to decide how to get the most out of the hardware. Once you've learned the capabilities of the hardware,

you can go ahead and create a device.

59

Step 3: Creating the Direct3D Device

Creating the device itself involves one function call, but that function requires you to know many of the

things you learned in the previous section. The function prototype is next, followed by several tables that

further define the parameters:

HRESULT IDirect3D8::CreateDevice (UINT Adapter, D3DDEVTYPE DeviceType,
HWND hFocusWindow, DWORD BehaviorFlags,
D3DPRESENT PARAMETERS *pPresentationParameters,

IDirect3DDevices8 **pNewDevice) ;

The first four parameters can be encapsulated into a structure called

D3DDEVICE CREATION PARAMETERS for easy storage. The first two parameters are the same as in
the previous steps. The window handle defines the window that determines whether the device has
focus. Table 7.2 describes the behavior flags, and Table 7.3 outlines the presentation parameters.
Finally, the final parameter is the address of the returned pointer of the newly created device (or NULL if
the function fails). The behavior and operation of the device are mostly defined by the data in the

following tables.

Table 7.2: Device Behavior Flags

Flag Comments

D3DCREATE HARDWARE VERTEXPROCESSING This flag specifies that all
vertices must be processed

by the hardware.

D3DCREATE SOFTWARE VERTEXPROCESSING This flag specifies that all
vertices must be processed
in software. In some cases,
this is more flexible than
hardware, but at a

performance penalty.

D3DCREATE MIXED VERTEXPROCESSING Setting this flag allows the
application to dynamically
specify what type of vertex

processing should be used.

D3DCREATE FPU PRESERVE This will ensure double-
precision floating-point math
operations. This can degrade

performance and in most

cases is not needed.

60

Table 7.2: Device Behavior Flags

Flag

Comments

D3DCREATE MULTITHREADED

This will ensure that the
device is safe to use with
multiple threads but will
probably degrade overall

performance.

D3DCREATE PUREDEVICE

This flag forces the device to
behave in an “all or nothing”
hardware mode. If hardware
vertex processing is not

supported, it will not emulate

it in software.

Table 7.3: D3ADPRESENT_PARAMETERS Structure

Member

Comments

UINT BackBufferWidth

This defines the width of the back buffer for full-screen
applications. For windowed applications, the device

tracks the window’s width.

UINT BackBufferHeight

See the preceding comment.

D3DFORMAT BackBufferFormat

This defines the pixel format of the back buffer for full-
screen applications. For windowed applications, the

device uses the format of the current display mode.

UNIT BackBufferCount

This is the number of back buffers (0, 1, 2, or 3). A

value of zero is treated as one. Increasing the number
of back buffers allows the device to continue writing to
one back buffer while another is being swapped to the

screen.

D3DMULTISAMPLE TYPE

This specifies the type of multisampling (antialiasing)
that MultisampleType should be performed. Check
the device caps to see what the hardware supports.
Also, you can only use this value with

D3DSWAPEFFECT DISCARD.

D3DSWAPEFFECT SwapEffect

The swap effect determines whether data is preserved
when it moves to the screen.

D3DSWAPEFFECT DISCARD yields the highest

61

Table 7.3: D3ADPRESENT_PARAMETERS Structure

Member Comments

performance because it selects the most efficient

presentation technique.

HWND hDeviceWindow In windowed applications, this is the handle to the

actual window that serves as a target for the device.

BOOL Windowed This flag specifies whether the application is windowed

or full screen.

BOOL EnableAutoDepthStencil If this flag is set, the device handles the creation and
management of the depth-stencil buffer. If this flag is

TRUE, the next member must be a valid format.

D3DFORMAT This is the format used if the preceding member is

AutoDepthStencilFormat TRUE. This must be a valid depth-stencil format for the
device.

DWORD Flags Currently, the only flag (other than 0) is

D3DPRESENTFLAG LOCKABLE BACKBUFFER. This
specifies that the back buffer is lockable. In general,

locking the back buffer decreases performance.

UINT FullScreen For windowed applications, this value must be set to 0.
RefreshRateInHz For full-screen applications, this value can be one of
the values returned by EnumAdapterDisplayModes.
There are also two predefined values:
D3DPRESENT RATE DEFAULT, in which the application
chooses a rate, or D3DPRESENT RATE UNLIMITED, in

which the application chooses the highest possible rate.

UINT FullScreen This flag determines whether the application waits for a
PresentationInterval vertical retrace. For
windowed applications, this value must be 0. Other

flags can range from immediate (the driver does not

wait) to a wait of up to four retraces.

One important point to remember is that you can logically OR these flags together, however you can

only specify one type of vertex processing.

The presentation parameters structure is perhaps the most involved part of the creation process. Table

7.3 explains each member of the structure.

62

The present parameters can seem quite complicated, and in fact, they can be the cause of many
failures when calling CreateDevice. However, in most cases, many of the parameters are zero or
some other default value. The most important things to remember are the differences between
windowed and full-screen applications and using valid formats. In most cases, if CreateDevice fails,
it's because you asked for a format that your device can’t support. Also, when creating a device, it is
useful to save a copy of the presentation parameters. You might temporarily lose a device, and you

need the presentation parameters to reset the device.

Step 4: Resetting a Lost Device

Sometimes you might lose a device and need to reset it. One of the more common causes is when a
full-screen application loses focus or a windowed application is minimized. A lost device means that

data can no longer be rendered until the device is reset.

Some games try to circumvent this by disabling the Alt+Tab key combination, making it impossible to
switch applications. This move is a bad idea for a couple of reasons. The first is that you can’t create a
situation where an instant messenger pop-up causes your game to crash. The other is that the user
tends to get upset when an application tries to bend the standard rules for Windows applications. The

best thing to do is to bite the bullet and learn how to reset the device.

The application can query the state of the device by calling TestCooperativelevel:

HRESULT IDirect3DDevice8::TestCooperativelevel ();

If the call to TestCooperativeLevel fails, the device is lost and rendering is not possible. At this
point, it's usually good to wait and call TestCooperativeLevel again. Because rendering is
impossible, application processing should not process any drawing code because it would waste
processor time. Instead, wait until TestCooperativeLevel returns D3DERR DEVICENOTRESET. At
this point, the application should try calling Reset with the saved present parameters. The prototype

follows:
HRESULT IDirect3DDevice8::Reset (D3DPRESENT PARAMETERS

*pPresentParameters) ;

If the call to Reset succeeds, the device is restored and the application can resume rendering. If not, it
should wait and try again until the call does succeed or perhaps until the wait time exceeds some

timeout. Following is an example of the process:

HRESULT Result = pD3DDevice->TestCooperativelevel () ;

while (Result == D3DERR DEVICELOST)
{
while (Result != D3DERR DEVICENOTRESET)
{
Sleep (1000) ;

63

Result = pD3DDevice->TestCooperativelevel () ;
}
if (FAILED (pD3DDevice->Reset (&m PresentParameters)))

Result = D3DERR DEVICELOST;

I have now talked about how you manage the lifetime of the device. There is one more step. Eventually,

you must destroy the device.

Step 5: Destroying a Device

Destroying the device is easy. It's simply a matter of calling Release:

HRESULT IDirect3DDevice8::Release();

This code releases the device, but it is generally a good idea to first release any objects that are

associated with the device, such as textures and vertex buffers.

Rendering with the Direct3D Device

The whole point of the previous five steps was to create a device that you could use to render your
awesome 3D scenes. | don’t know about you, but I'm dying to get started! Once your device is created
and you're sure it hasn’t been lost, you can begin rendering your scene. You do this with the aptly

named BeginScene:

HRESULT IDirect3DDevice8::BeginScene() ;

This tells the device that you are about to render a scene. The device then sets up internal structures
and waits for instructions. Once you send all the instructions for a given scene, the application can call

EndScene:

HRESULT IDirect3DDevice8::EndScene () ;

Note that scenes cannot be embedded; you must can EndScene before beginning a new scene. Also, it

is usually advantageous to place as many instructions as possible into a single scene.
Once the scene is rendered, the application tells the device to put the graphics on the screen by calling
Present:
HRESULT IDirect3DDevice8::Present (CONST RECT *pSourceRect,
CONST RECT *pDestRect,
HWND hDestinationWindow,

CONST RGNDATA *pDirtyRegion) ;

In general, most of the time these parameters should all be NULL. (The last parameter must always be

NULL.) Using all NULLs places the entire rendered scene in the default window specified in the present

64

parameters. Changing the source and destination rectangles is possible, but it's been my experience
that it's better to change the way the scene is rendered and present everything than to play with these

parameters.

One final piece of the puzzle is a fairly fundamental part of rendering, and that is clearing the device.

Clearing the Device

Clearing in this context means that you are erasing the current contents of the frame buffer in
preparation for a new scene. Some people try to do this by rendering a large rectangle onto the buffer.
This is very poor form. Don'’t do it that way. The hardware is capable of performing very fast clears of
the buffer when the application calls C1ear. Following is the function prototype followed by an

explanation of the parameters in Table 7.4:

HRESULT IDirect3DDevice::Clear (DWORD RectCount, CONST D3DRECT *pRects,
DWORD Flags, D3DCOLOR Color, float Depthvalue,
DWORD StencilValue) ;

Table 7.4: Clear Parameters

Flag Comments

DWORD RectCount Specifies the number of subrectangles to clear. A

value of 0 clears the entire buffer.

D3DRECT *pRects Pointers to the subrectangles. The number of
rectangles must equal RectCount. A value of

NULL clears the entire buffer.

DWORD Flags Specifies which buffers to clear. Possible values
are D3DCLEAR TARGET, D3DCLEAR STENCIL,
and D3DCLEAR ZBUFFER. You can use these
flags in any combination. Most applications are
only concerned with the target frame buffer and
the Z (depth) buffer.

D3DCOLOR Color This is the color used to fill the frame buffer.

FLOAT DepthValue This is the value used to fill the depth buffer. This
value ranges from 0.0 to 1.0, and the usual clear

value is 1.0.

DWORD StencilValue This is the value used to fill the stencil buffer. Its
valid range depends on the bit depth of the stencil
buffer.

65

As with Present, it is usually best to clear the entire scene rather than deal with particular
subrectangles. Clear is usually called before a scene is rendered to "clear the slate," but you can also

call it mid-scene to help with stencil operations or certain depth effects.

So those are the pieces you need in place for your device to work. The source code for this chapter
completes the basic framework you started in the last chapter. Before you move on to the real rendering,

let's revisit the source code and see how it has changed.

Application.h Revisited

The new application class includes several data members and functions needed to maintain the device

and make the new functionality accessible to subclasses. The new code for ® Application.h follows

with explanations for the new features.

You include the Direct3D header files because you will be using Direct3D data types. Note that you no
longer include windows.h because the DirectX header files also include the basic types. If, for some

reason you want to keep it, including windows.h will not cause any errors:
#include <d3d8.h>
#include <d3dx8.h>
class CHostApplication
{
public:
CHostApplication();
virtual ~CHostApplication();
LRESULT WINAPI MessageHandler (HWND hWnd, UINT msg, WPARAM wParam,
LPARAM lParam) ;

void Go () ;

The following methods are protected because they should be accessed only by this class or child

classes:

protected:

The InitializeD3D function initializes the Direct3D object that you use to create the Direct3D device:

HRESULT InitializeD3D();

This is the generalized device creation function. You can call this function directly using all the

parameters, or the application can call one of the following simplified functions:
HRESULT CreateDevice (D3DDEVICE CREATION PARAMETERS *pCreateParms,

D3DPRESENT PARAMETERS *pPresentParms) ;

66

This is a simplified utility function for creating a windowed application:
HRESULT EasyCreateWindowed (HWND WindowHandle,
D3DDEVTYPE DeviceType,

DWORD Behavior) ;

This function is a utility function to create a quick and dirty full-screen application:
HRESULT EasyCreateFullScreen (D3DDISPLAYMODE *pMode,
D3DDEVTYPE DeviceType,

DWORD Behavior) ;

This function implements the wait-and-reset procedure explained earlier:

HRESULT RestoreDevice();

The application can call this function to query the device about all available modes. The SDK framework
includes a more full-featured version of this including device confirmation. For the sake of simplicity,

your framework simply gives the application access to all modes:

long EnumerateModes (D3DDISPLAYMODE *pModes, long ModeCount) ;

This function takes care of destroying the device:

HRESULT DestroyDevice () ;

This function is called before rendering begins. It calls Clear and BeginScene. Other applications can
override this function to do things, such as change the clear color or other clear parameters, but that

new function must call BeginScene or rendering will fail:

virtual void PreRender () ;

This function is called after everything is rendered. It calls EndScene and Present. As stated earlier,

applications that override this function must call EndScene:

virtual HRESULT PostRender () ;

The following eight functions are hooks provided for child classes of this class. If the child class
overrides these functions, the base class calls them when it needs to notify the child class of certain
events. For example, the child class can override HandleMessage and provide custom responses to
input messages. It can also override PreReset to make sure that all device-dependent objects, such

as textures, are cleaned up before the device is reset:
virtual BOOL PrelInitialize();
virtual BOOL PostInitialize();
virtual BOOL PreTerminate();

virtual BOOL PostTerminate () ;

67

virtual void Render();

virtual BOOL PreReset();

virtual BOOL PostReset();

virtual BOOL HandleMessage (MSG *pMessage) ;
protected:

HWND m_ hWnd;

long m WindowWidth;

long m WindowHeight;

This is the pointer to the all-important Direct3D device:

LPDIRECT3DDEVICES m pD3DDevice;

This is the pointer to our Direct3D object:

LPDIRECT3DS8 m_pD3D;

These two member variables act as saved copies of the device-creation parameters, which will be

useful in the event that the device needs to be reset or recreated:
D3DPRESENT PARAMETERS m PresentParameters;

D3DDEVICE CREATION PARAMETERS m CreationParameters;

This flag is set to TRUE by default and can be set to FALSE by this class or child classes to instruct the

application to stop rendering frames.

BOOL m_Continue;

i

The following section describes the implementation of the now-complete class and includes many of the

concepts from this chapter.

Application.cpp Revisited

The following is the new application implementation, which includes the device-maintenance features of
this chapter. Notice that some of the code from the last chapter has been moved around to
accommodate these new features. This revision is the last for CHostApplication. Any further

changes are implemented in the form of derived classes developed for each chapter.

Figure 7.1 shows the revised flow chart for this application. The overall flow is the same, but now

includes the device management and rendering code.

68

Figure 7.1: Application flow.

Because of the sheer amount of code, only the changed or added code is commented:

#include "Executable.h"

#include "Application.h"

CHostApplication: :CHostApplication ()
{
m WindowWidth = 640;

m WindowHeight = 480;

void CHostApplication::Go ()
{
WNDCLASSEX WindowClass = {sizeof (WNDCLASSEX),CS CLASSDC,

EntryMessageHandler, 0, O,

69

GetModuleHandle (NULL), NULL, NULL,
NULL, NULL, "Host Application", NULL};

RegisterClassEx (&WindowClass) ;

m _hWnd = CreateWindow ("Host Application", "Host Application",
WS OVERLAPPEDWINDOW, 0, 0, m WindowWidth,
m WindowHeight, GetDesktopWindow (), NULL,
WindowClass.hInstance, NULL);

if (m_hWnd)

ShowWindow (m_hWnd, SW_SHOW) ;

Here you initialize the Continue flag. The application continues rendering until it receives a quit

message or until this flag is set to FALSE:

m Continue = TRUE;

This is your first call to one of the virtual functions. Child classes can implement this function if they want
to initialize something before the D3D object is created. If the child class returns FALSE, the application

stops:
if (!PrelInitialize())

return;

This function simply creates the D3D object, as described earlier in this chapter. The actual function is

implemented later in the code:

InitializeD3D();

This is the one loose end with this file. In this chapter, you call EasyCreateWindowed so that you
have something to show. In later chapters, this function call is removed, and child classes should create

either a windowed or a full-screen device by overriding the PostInitialize function:
if (FAILED (EasyCreateWindowed (m hWnd, D3DDEVTYPE HAL,
D3DCREATE HARDWARE VERTEXPROCESSING)))

return;

You call this once the D3D device is created. Again, if the child class returns FALSE, everything grinds

to a halt:
if (!PostInitialize())

return;

70

Your message loop is now augmented with the rendering code. This means that the application renders

frames as quickly as it can but still responds to messages in a timely fashion:
MSG Message;
PeekMessage (&Message, 0, 0, 0, PM REMOVE) ;
while (Message.message != WM QUIT && m Continue)

{

This gives the child classes the opportunity to do whatever they may need to do before beginning the

actual scene:

PreRender () ;

Here is where the framework tells the child to render anything it wants to render. In later chapters, this is

where most of the magic happens:

Render () ;

Now you call PostRender to complete the rendering process. PostRender returns the result of
Present, which is used here to determine whether the device has been lost. If the device has been lost,
you call PreReset and then RestoreDevice to restore it. Once the device is restored, you tell the
child class about it by calling PostReset. Here, the child class should reinitialize anything that might

have been lost when the device was lost:
if (D3DERR DEVICELOST == PostRender ())
{
PreReset () ;
RestoreDevice () ;

PostReset () ;

If the child class processes the message and returns FALSE, you should stop rendering frames:
TranslateMessage (&Message) ;
DispatchMessage (&Message) ;
PeekMessage (&Message, 0, 0, 0, PM REMOVE) ;

m _Continue = HandleMessage (&Message) ;

If you've gotten this far, it's time to quit. Here the framework gives the child class the opportunity to

clean up before the device is destroyed:

PreTerminate () ;

71

And with this, the device is gone. You are well on the road to ending the application for good:

DestroyDevice () ;

The child class now has one last chance for any final clean-up:

PostTerminate () ;

The PreRender function handles the initial stages of rendering. It clears the buffers and calls
BeginScene. If applications choose to override this function, they can change the parameters of

Clear and add more initialization code, but they must be sure to call BeginScene:
void CHostApplication: :PreRender ()
{
m pD3DDevice->Clear (0, NULL, D3DCLEAR TARGET | D3DCLEAR ZBUFFER,
D3DCOLOR XRGB (0O, 0, 0), 1.0f, 0);
m pD3DDevice->BeginScene () ;

return;

PostRender is the last thing that’s called for a given frame. Any application that overrides this function
should call EndScene, and the return value of this function must be the result of Present or the

framework will not handle lost devices properly:

HRESULT CHostApplication::PostRender ()
{
m_pD3DDevice->EndScene () ;

return m pD3DDevice->Present (NULL, NULL, NULL, NULL);

The last thing the application does is release the D3D object:
CHostApplication::~CHostApplication ()
{
if (m_pD3D)
m_pD3D->Release();

m_pD3D = NULL;

This is the default message handler for the application class. Most of the real work happens in the

overrideable HandleMessage function, but this still provides a hook for the global message handler:

72

LRESULT WINAPI CHostApplication::MessageHandler (HWND hWnd,

UINT Message, PARAM wParam, LPARAM lParam)

switch (Message)
{
case WM DESTROY:
PostQuitMessage (0) ;

return 0;

return DefWindowProc (hWnd, Message, wParam, lParam);

This creates the basic D3D object and initializes the device to a NULL value so that you can easily

check whether it has been created:

HRESULT CHostApplication::InitializeD3D()

{
m pD3D = Direct3DCreate8 (D3D SDK VERSION) ;
m_pD3DDevice = NULL;

return S OK;

HRESULT CHostApplication::CreateDevice (
D3DDEVICE CREATION PARAMETERS *pCreateParms,

D3DPRESENT PARAMETERS *pPresentParms)

Keep copies of the parameters so that you can easily reset or recreate the device:
memcpy (&m CreationParameters, pCreateParms,
sizeof (D3DDEVICE CREATION PARAMETERS)) ;
memcpy (&m_PresentParameters, pPresentParms,

sizeof (D3DPRESENT PARAMETERS)) ;

This call actually creates the device. If it is successful, the device member variable will be valid and

usable:

73

return m pD3D->CreateDevice (pCreateParms->AdapterOrdinal,
pCreateParms->DeviceType,
pCreateParms->hFocusWindow,
pCreateParms->BehaviorFlags,

pPresentParms, &m pD3DDevice);

The following function destroys the device and reinitializes the pointer to NULL. If a device has been
created, you should call this function before attempting to recreate the device (if you are changing from

windowed to full screen, for instance):

HRESULT CHostApplication::DestroyDevice ()

{
if (m_pD3DDevice)
m_pD3DDevice->Release () ;
m_pD3DDevice = NULL;

return S OK;

long CHostApplication: :EnumerateModes (D3DDISPLAYMODE *pModes,

long ModeCount)

First, get the actual number of available modes:

long Count = m pD3D->GetAdapterModeCount (D3DADAPTER DEFAULT) ;

Next, make sure that you don’t ask for more than the number of modes that actually exist:
if (ModeCount > Count)
ModeCount = Count;

Now, fill the supplied structures with the mode information and return the actual number of available

modes. This way, the application could call this function with NULL parameters to obtain the count and

then call the function again with a valid pointer:

for (long ModeIndex = 0; ModeIndex < ModeCount; ModeIndex++)

m_pD3D->EnumAdapterModes (D3DADAPTER DEFAULT, ModeIndex,

& (pModes [ModeIndex])) ;

74

return Count;

This function is the actual implementation of the technique discussed earlier. The only real difference
here is that this version includes a message pump so that messages are continually processed while

the application is waiting for the device to be reset:
HRESULT CHostApplication::RestoreDevice ()

{

HRESULT Result = m pD3DDevice->TestCooperativelLevel();

while (Result == D3DERR DEVICELOST)
{
while (Result != D3DERR DEVICENOTRESET)
{
Sleep (1000) ;

MSG Message;
PeekMessage (&Message, 0, 0, 0, PM REMOVE) ;
TranslateMessage (&Message) ;

DispatchMessage (&Message) ;

Result = m pD3DDevice->TestCooperativelLevel ();

if (FAILED (m pD3DDevice->Reset (&m PresentParameters)))

Result = D3DERR DEVICELOST;

return S OK;

This function provides a wrapper around CreateDevice. This is convenient when debugging on a
known piece of hardware where you don’t need to continually query the device capabilities. | have
supplied values that work well on geForce2 and geForce3 cards. If you need to, replace the default

values with ones that work well on your hardware.:
HRESULT CHostApplication::EasyCreateWindowed (HWND WindowHandle,

D3DDEVTYPE DeviceType,

75

ZeroMemory(&m_PresentParameters,

DWORD Behavior)

D3DDISPLAYMODE CurrentMode;

(SUCCEEDED (m_pD3D->GetAdapterDisplayMode (D3DADAPTER DEFAULT,

&CurrentMode)))

ZeroMemory(&m_PresentParameters,
sizeof (D3DPRESENT PARAMETERS)) ;

m_PresentParameters.Windowed = TRUE;

m_PresentParameters.SwapEffect = D3DSWAPEFFECT DISCARD;

m PresentParameters.BackBufferFormat = CurrentMode.Format;

m PresentParameters.EnableAutoDepthStencil

m PresentParameters.AutoDepthStencilFormat

TRUE;

D3DFMT D16;

m CreationParameters.AdapterOrdinal = D3DADAPTER DEFAULT;

m CreationParameters.DeviceType = DeviceType;
m CreationParameters.hFocusWindow = WindowHandle;
m CreationParameters.BehaviorFlags = Behavior;

return CreateDevice (&m CreationParameters,

&m_ PresentParameters) ;

return E FATL;

D3DDEVTYPE DeviceType,

DWORD Behavior)

m_PresentParameters.Windowed = FALSE;

76

This is another convenience function for creating full-screen devices. Again, it is meant as a

convenience for the programmer, so feel free to change the values to whatever works for you:

HRESULT HostApplication::EasyCreateFullScreen (D3DDISPLAYMODE *pMode,

sizeof (D3DPRESENT PARAMETERS)) ;

m_ PresentParameters.SwapEffect = D3DSWAPEFFECT DISCARD;
m PresentParameters.BackBufferWidth = pMode->Width;

m_ PresentParameters.BackBufferHeight = pMode->Height;

m PresentParameters.BackBufferFormat pMode->Format;
m PresentParameters.FullScreen RefreshRatelInHz =

pMode->RefreshRate;

m PresentParameters.EnableAutoDepthStencil TRUE;

m PresentParameters.AutoDepthStencilFormat D3DFMT D16;

m CreationParameters.AdapterOrdinal = D3DADAPTER DEFAULT;

m CreationParameters.DeviceType = DeviceType;
m CreationParameters.BehaviorFlags = Behavior;
m CreationParameters.hFocusWindow = m_ hWnd;

return CreateDevice(&m_CreationParameters, &m_PresentParameters);

This is the basic implementation of the overrideable message handler. Child classes can override this to

provide their own functionality:
BOOL CHostApplication::HandleMessage (MSG *pMessage)
{
if (pMessage->message == WM _KEYDOWN &&
pMessage->wParam == VK ESCAPE)
return FALSE;

return TRUE;

These last nine functions are just placeholders for functions that may or may not be overridden by child
classes. In this base class, the default behavior is to do nothing and return TRUE. In later chapters, the

bulk of the work happens in functions such as PostInitialize and Render.
void CHostApplication::PreRender () {return;}
void CHostApplication::Render () {}

void CHostApplication::PostRender () {return;}

77

BOOL CHostApplication::PreInitialize () {return TRUE;}
BOOL CHostApplication::PreTerminate () {return TRUE;}
BOOL CHostApplication::PostInitialize () {return TRUE;}
BOOL CHostApplication::PostTerminate () {return TRUE;}
BOOL CHostApplication::PreReset () {return TRUE;}

BOOL CHostApplication::PostReset () {return TRUE;}

In Conclusion...

You now have all the pieces of your simple framework. | haven’t spent a lot of energy managing modes

or determining formats because the SDK framework shows how to do that in excruciating detail. The

purpose of this framework is to introduce you to the basics so that you can make sense of the SDK

samples and also to provide a framework that is good enough to support the really cool techniques in

later chapters. If you are designing a game that must run on many different platforms, you will need to

build out the mode-management features, but this should provide a strong starting base. As always,

let's talk about a couple of key points:

] The Direct3D device is the entity that manages and supplies rendering capabilities.

" The reference device supplies all the capabilities, but at a stiff performance penalty. It's not good
for real use, but it can be good for testing.

= Predetermined device settings are great for experimenting on your own hardware, but real
applications must query the hardware before determining what parameters should be used to
create a device.

= Device-creation parameters have a strong impact on the overall performance of the device.

= Devices can be lost and reset, but a good application does not eat up processor power while the
device cannot render.

= Your framework now provides several functions that can be overridden by child classes. From

now on, you will create child classes rather than make changes to these basic files.

Part lll: Let the Rendering Begin

Chapter List

Chapter 8: Everything Starts with the Vertex
Chapter 9: Using Transformations

Chapter 10: From Vertices to Geometry
Chapter 11: Fixed Function Lighting

Chapter 12: Introduction to Textures

78

Chapter 13: Texture Stage States

Chapter 14: Depth Testing and Alpha Blending

The previous sections concentrated on the boring but necessary aspects of understanding how the
Direct3D device works and how to set things up for rendering. Now, you will finally begin rendering
graphics. You're still not quite ready to check out cool techniques, but this section covers all the
fundamentals of rendering. For experienced users, much of these next chapters might seem like review.
However, whenever possible, | address some of the deeper aspects of rendering, especially in the

performance discussions. There should be new material here for nearly everyone.

Here’s a breakdown of the chapters in this section:

" By the end of Chapter 8, “Everything Starts with the Vertex,” you’ll know more than you ever

wanted to know about the most primitive of primitives—the humble vertex.

" Chapter 9, “Using Transformations,” takes all the theory | discussed in Chapter 3 and shows how

you can use matrices to manipulate the data you’re drawing on screen.

" Chapter 10, “From Vertices to Geometry,” is where the rendering becomes interesting. | talk about

how the vertex is really used and get into the theory and practice of drawing data as quickly as
possible.

. In all of the shader techniques, you will implement your own lighting. However, Chapter 11, “Fixed

Function Lighting,” briefly touches on how to use the lighting features built into DirectX.

" Chapter 12, “Introduction to Textures,” covers the last basic entity. | discuss how you create and

load them and all the cool ways to use them.
] Now that you finally have real geometry and textures on the screen, | can begin to talk about the

various states that determine how textures are applied and blended. Chapter 13, “Texture Stage

States,” talks about the texture stage states that determine how textures are actually applied to
meshes. | will also explain how to blend textures using color operations and multiple textures.

. Pixels must pass several tests before they are actually rendered to the screen. Chapter 14, “Depth

Testing and Alpha Blending,” describes two of these tests. I'll explain the importance of depth

testing and demonstrate the finer points of rendering semitransparent objects.

Chapter 8: Everything Starts with the Vertex

® Download CD Content

Overview

The most basic geometric primitive in 3D graphics is the vertex. It is the basic building block of all the
other geometric primitives. By the end of this chapter, you will understand more than you ever thought
possible about the way vertices are created and used. And of course, | discuss how to wield your
powers to destroy that which you’ve created. The code for this chapter is on the CD in \Code\Chapter08.

This chapter continues to build on the previous chapters by adding the following concepts:

79

= Understanding vertices.

. Creating vertices and vertex buffers.

. Destroying a vertex buffer.

= Locking a vertex buffer and changing vertex data.
= Rendering the vertices.

= Understanding the performance implications.

= Building vertex rendering into the application framework.

What Is a Vertex?

Geometry class teaches that any position in space can be represented by the mathematical notion of a
point. We also learn that two points in space define a line and that three points in space can define a
triangle, as shown in Figure 8.1. This sounds like exactly what we need for 3D graphics! We need a

basic entity that will serve as a building block for drawing points, lines, and surfaces.

Vé
™ V]
V1 AE]
W2 Wi

A Paint A Lina A Triangle

Figure 8.1: Everything starts with vertices.

The vertex is that basic entity. 3D hardware is specially designed to process vertices quickly and
efficiently and to use them to draw points, lines, and surfaces (triangles). All geometry manipulation on
the graphics card begins with vertex manipulation. Only after the vertices are manipulated does the card
begin thinking about how to actually draw the geometry. Therefore, everything you draw in 3D begins

with the vertex!

No Really, What Is a Vertex?

In concrete programming terms, a vertex is an instance of a data structure that contains the attributes of
a point on your surface, line, or point in space. This data structure is passed through the pipeline, and
the values are used and manipulated along the way. In DirectX, you can change the format of this data
structure to fit the requirements of a specific rendering task. You can render simple geometry using a
format that only contains the X,Y,Z position of the vertex. Multitextured, multicolored, lit geometry can
be represented by a more comprehensive format. These formats are specified as Flexible Vertex
Formats (FVFs). FVFs are defined as a combination of flags that specify the format of a given set of

vertices. Table 8.1 describes these flags.

Table 8.1: FVF Flag Definitions

Flag Comments

80

Table 8.1: FVF Flag Definitions

Flag

Comments

D3DFVFE XYZ

This flag specifies the use of three FLOATSs to
represent the X,Y,Z position of the vertices.
Vertices using this flag are sent through the

geometry pipeline to be transformed.

D3DEFVFE XYZRHW

This flag specifies the use of four FLOATS to
represent the pretransformed screen position
of the vertices. In addition to the X,Y,Z position,
the fourth value is the reciprocal W value. The
RHW value will only become important when |
talk about the W buffer. Vertices defined with
this flag bypass the transformation and lighting
portion of the pipeline; the device assumes that

the application has already done that.

D3DFVFE XYZB1 - D3DFVF XYZB5

Certain forms of animation allow multiple
matrices to be used as “bones” that drive the
animation. Each vertex may be affected by
each of these bones with a different weight.
These flags specify how many weights are
included in the format. Each weight requires
one FLOAT, so D3DFVF_XYZB2 requires two
FLOAT values. Although there are flags for up
to five blend weights, DirectX 8.0 supports only
three. | use these values when | talk about

animation later.

D3DFVF LASTBETA UBYTE4

If this flag is specified, the last blend weight is

treated as a DWORD instead of a FLOAT.

D3DFVEF NORMAL

This flag specifies that the vertex format
include a vertex normal vector represented by
three FLOATSs (X,Y,Z). For example, if this
vertex is part of a surface, the normal value
would probably be the surface normal at this

point.

D3DEVF PSIZE

This flag specifies that the format include a

single FLOAT value defining the point size for

81

Table 8.1: FVF Flag Definitions

Flag Comments

vertices. The effect of this flag can depend on

the hardware and device capabilities.

D3DFVF DIFFUSE Formats that include this flag include a DWORD
value that encodes a 32-bit RGBA diffuse
color.

D3DFVF_ SPECULAR Same as preceding for specular color.

D3DFVF TEX0 - D3DFVF TEX8 These flags specify the total number of texture

coordinates used in this format. In most cases,
each set of texture coordinates is represented
by two FLOAT values, but you can set the

actual size with the next flag.

D3DFVF TEXTUREFORMATI- This flag specifies how many FLOAT values are
D3DFVF TEXTUREFORMAT4 used to define each set of texture coordinates.

The default size is

D3DFVF TEXTUREFORMATZ.

I's important to remember that you cannot use some of these flags together. For instance, it doesn’t
make sense to combine the D3DFVF XYZRHW flag with the D3DFVF NORMAL flag because
pretransformed and lit vertices would not need a normal vector. Likewise, you cannot use the flags for

untransformed and pretransformed vertices in the same format.

Equally important to remember is that Table 8.1 lists the flags in the order in which DirectX expects the
data to appear. For instance, if a format specifies position, color, and texture coordinate information, the
vertex structure must be arranged in that order. Following is a code snippet that shows some sample

vertex formats and their corresponding data structures:

#define D3DFVF TRANSFORMEDVERTEX (D3DFVF XYZRHW | D3DFVF DIFFUSE)

struct TRANSFORMED VERTEX

{

float x, vy, z, rhw;
DWORD color;

b

#define D3DFVF SIMPLEVERTEX (D3DFVF XYZ | D3DFVE NORMAL |

82

D3DFVFE DIFFUSE)

struct SIMPLE VERTEX
{
FLOAT x, vy, z;
FLOAT nx, ny, nz;
DWORD d;

}i

You can define a data type based on what attributes you want to be included in the vertex. Those
attributes are defined in the FVF, and that FVF tells the device the layout of your custom vertex format.
This creates a flexible way to create and use vertices in a wide variety of ways. In fact, as you'll see
later, you can use the vertex format to store all sorts of things. When you get into shaders, you will
abuse the FVF in many ways. Shaders allow you to redefine how vertices are processed, so there is no
reason that the texture coordinate data must be valid texture coordinates. I'm getting ahead of myself,
but | want to reinforce the point that these flags tell the standard pipeline what data to expect, but
shaders allow you to treat these attributes as free slots for all sorts of data. | address this in Part 4. For

now, back to the discussion of vertices!

Creating Vertices

At this point, | have defined what a vertex is and the data structure that defines vertices; now you just
need to create them. One fairly obvious method would be to simply allocate a block of memory as you
would any other data. Why not? There are DirectX functions that accept user memory pointers...but you
must resist the urge! There are such functions, but 99.99 percent of the time, they are a bad choice in
terms of performance. They are bad enough that | do not discuss them here. If you use them, | suppose
we could still be friends, but | might talk about you behind your back, and you'll never get a good table

at restaurants.

What you really want to do is create a vertex buffer. The reason a vertex buffer is preferable is that the
device tries to place the buffer in video memory or at least AGP memory. This ensures that the card can
get to the data as quickly as possible, which means good performance. A vertex buffer is actually
created by the device with a call to IDirect3DDevice8: :CreateVertexBuffer. As usual, the

function prototype here is followed by tables of parameters:

HRESULT IDirect3DDevice8::CreateVertexBuffer (UINT BufferLength,
DWORD Usage, DWORD FVF, D3DPOOL MemoryPool,
IDirect3DvertexBuffer8 **ppVertexBuffer);

The buffer length parameter specifies the size of the buffer in bytes. The FVF parameter is the format of

the vertices in the buffer. Assuming this function succeeds, the last parameter is set to a valid vertex

83

buffer pointer. The Usage parameter can be a combination of the flags in Table 8.2, and the

MemoryPool parameter can be set to one of the values in Table 8.3.

Table 8.2: Vertex Buffer Usage Flags

Flag

Comments

D3DUSAGE DONOTCLIP

This flag tells the device not to clip any
of the vertices in this buffer during
rendering. If you set this flag, you
should disable clipping on the device

before rendering this vertex buffer.

D3DUSAGE DYNAMIC

The dynamic tells the device that the
contents of this buffer may change
frequently. The device places dynamic
buffers in AGP memory and static
buffers directly in video memory. Note
that there is no explicit flag for static
buffers. The absence of this flag implies

static usage.

D3DUSAGE RTPATCHES

You use this flag for vertex buffers that

are used for higher-order meshes.

D3DUSAGE NPATCHES

You use this flag when the vertex buffer

will be used for N patches.

D3DUSAGE POINTS

This flag specifies that the vertex buffer
will be used to draw point sprites or

point lists.

D3DUSAGE SOFTWAREPROCESSING

If you use this flag, this buffer will be

processed in software.

D3DUSAGE WRITEONLY

If you use this flag, the vertex buffer can
only be written to. Attempts to read from
the buffer will fail.

Table 8.3: D3DPOOL Values

Value

Comments

D3DPOOL DEFAULT

Resources created with this flag are usually
created in either system or AGP memory. This
is recommended for vertex buffers. Dynamic

vertex buffers must be created with this pool

84

Table 8.3: D3DPOOL Values

Value Comments
parameter.
D3DPOOL_MANAGED Resources created with this flag are managed

by the device. The device keeps a copy of the
data in system memory and copies it into video
memory as needed. If the device is lost, DirectX
uses the system copy to recreate it
transparently. This saves the application the

trouble of recreating the buffers.

D3DPOOL_SYSTEMMEM Resources are created in system memory. This
is typically not the best setting for vertex buffers

because the memory is not directly accessible

by the hardware.

The following code shows how to create a static buffer in video memory with 10 simple vertices (the

FVF was defined earlier):
LPDirect3DVertexBuffer8 m pVertexBuffer;
if (FAILED (m pD3DDevice->CreateVertexBuffer (
10 *sizeof (SIMPLE VERTEX),
D3DUSAGE WRITEONLY,
D3DFVF SIMPLEVERTEX,
D3DPOOL DEFAULT,

&m_pVertexBuffer)))

This call creates a vertex buffer. Now all you have to do is fill it with actual data.

Destroying the Vertex Buffer

After all that work to create the buffer, destroying the buffer is easy. Simply call:

HRESULT IDirect3DvertexBuffer8:Release();

This destroys the buffer and cleans up any resources associated with it.

Setting and Changing Vertex Data

Because vertex buffers can exist in video memory or in memory that is managed by the device, you
cannot directly change the values. To access the values, the application must call
IDirect3DvertexBuffer8: :Lock. Lock returns a pointer to the vertices that you can use to

change the values:

85

HRESULT IDirect3DvertexBuffer8::Lock (UINT StartingOffset,

UINT BufferSize, BYTE **ppLockedBuffer, DWORD Flags);

The startingOffset is the offset to where the locked data begins. The BufferSize is the number
of locked bytes. The ppLockedBuffer parameter is a pointer to be set to the locked data, and the

Flags are defined Table 8.4.

Table 8.4: Vertex Buffer Locking Flags

Flag Comments

D3DLOCK_DISCARD This flag tells the device to throw away the old
data and return a new pointer. This can be good
for performance because the device does not
have to stall the pipeline while retrieving the old

data. This only works for dynamic buffers.

D3DLOCK_NOOVERWRITE This flag allows for optimizations while
appending data to a preexisting buffer. If you
are adding data to a buffer, this flag is

recommended.

D3DLOCK_NOSYSLOCK Normally, locking the vertex buffer locks system-
wide resources. Long duration locks might want
to include this flag so that the system can

continue during the locking operation.

D3DLOCK READONLY You can specify this flag when the application

only wants to read the buffer. You cannot use it

with a write-only vertex buffer.

Once the buffer is locked, you can use the returned pointer to set the vertex values. Once the values

are set, the application can call unlock to return the new data to the device:

HRESULT IDirect3DvertexBuffer8::Unlock();

Continuing with the sample, the following code sets the vertex values in your vertex buffer:
TRANSFORMED VERTEX *pVertices;
m pVertexBuffer->Lock (0, 10 * sizeof (TRANSFORMED VERTEX),
(BYTE **)spVertices, D3DLOCK DISCARD) ;
for (long Index = 0; Index < 10; Index++)
{

pVertices[Index].x = SOME VALUE;

86

pVertices[Index].y SOME VALUE;

pVertices[Index].z = 1.0f;

pVertices[Index].rhw = 1.0f;

pVertices[Index].color = Oxffffffff;

}

m pVertexBuffer->Unlock();

The buffer is now filled and ready to be used. You can send the vertices through the pipeline to be

rendered.

Rendering Vertices

Finally, you're about to put something on the screen. In all the previous code snippets, I've talked about
pretransformed vertices because | haven’t talked about transforms yet. (That's the next chapter.) |
continue on that thread. Compared to all the setup you’ve done, the actual rendering is simple. There

are three things you need to consider.

The first thing is that you need to tell the device what sorts of vertices it's dealing with. You do this with
acallto IDirect3DDevice8: :SetVertexShader. In this context, the vertex shader is actually the
FVF (Flexible Vertex Format) of your vertices. Weird, | know... Using the FVF tells the device what the
vertex format is and that the vertices should be processed in the standard pipeline. You only call this

function when the format changes, not every time you render. The function looks like this:

HRESULT IDirect3DDevice8::SetVertexShader (DWORD FVF) ;

The second step is to tell the device where the vertices are coming from. You do this by passing the
vertex buffer to IDirect3DDevice: : SetStreamSource. This tells the device where the vertices are
stored. Again, you only call this function if you need to specify a different vertex buffer. The function

looks like this:
HRESULT IDirect3DDevice::SetStreamSource (UINT StreamNumber,
IDirect3DvertexBuffer8 *pVertexBuffer,
UINT Stride);
The streamNumber parameter specifies which stream to associate to this vertex buffer. Until you get
into vertex shaders, you will only be using stream 0. The Stride parameter specifies the size in bytes

for each vertex. Again, until you get into vertex shaders, the stride must be the size of the vertex as

specified by your FVF.

87

The last step tells the device to actually draw the vertices. You do this by calling

IDirect3DDevice: :DrawPrimitive. The function follows:
HRESULT IDirect3DDevice8::DrawPrimitive (D3DPRIMITIVETYPE Type,
UINT StartVertex,

UINT PrimitiveCount);

| discuss these parameters at length in Chapter 10 because they have the greatest impact on rendering
actual geometry. Because | am only talking about single vertices for now, the type is
D3DPT POINTLIST, and the count is the number of points you want to render.
Continuing the running sample code, this is how you would render your set of vertices:
m _pD3DDevice->SetVertexShader (D3DFVF SIMPLEVERTEX) ;
m_pD3DDevice->SetStreamSource (0, m pVertexBuffer,

sizeof (SIMPLE VERTEX));

m _pD3DDevice->DrawPrimitive (D3DPT POINTLIST, 0, NUM VERTICES) :;

You now have all the pieces in place to actually render something to the screen. Figure 8.2 shows each

of these steps. You don’t need to execute these steps each frame.

Create Vertes Bufler Callad during intakration
i
Lock Veriax Buffer ‘Calie whin changng veras
datn. Usualy caled dunng
' kit
Chairsgs \Viarex Dala

Lnioc Vit Bufer

Sat ienax Shades Calied wherewver you changs the
' Vi SR OF B warsE buffer
St Sream Source
Dy Vst Dala Calia wien Fendenng wrlicesy.
Dastroy Viena: Bufer Calind it tha end of I BRDECHSCN

Figure 8.2: Vertex buffer operations.

88

But I'm still going to make you wait a little bit longer. Let’s back up a little, revisit what you have learned,

and look at it from the performance perspective.

Performance Considerations

Before | say anything about performance, remember that performance is ultimately a function of what
exactly you're trying to do. Therefore, these are some rules of thumb, but you should always experiment
to find the best approach for you. The following is a laundry list of things to consider:

= In general, locking the vertex buffer is a costly operation and should be avoided when possible.
Often a lock is necessary, but I've heard horror stories of people locking, setting three vertices,
rendering, and repeating. Instead, add many more vertices in a single lock.

" Be very aware of the flags used when creating and locking the vertex buffer. Different flag or flag
combinations could make measurable performance differences. When in doubt, experiment until
you find the best setup.

= Usually, the more vertices you can send to the card in a single call, the better. The numbers differ
for different cards and different applications, but a general rule of thumb is that the number should
be in the thousands, not in the tens of vertices.

= Calling setvertexShader is a costly operation. It forces the device to stop and prepare for the
new type of data. If you’re dealing with different FVFs, group your geometry by FVF to avoid
switching back and forth. Some people even go so far as to render every other frame in different
orders to avoid unnecessary switches!

= Because switching formats is costly, create formats based on attributes, not on objects. Therefore,
don’t create one format for cars and another format for airplanes if they share the same attributes.
Instead, create one format for single textured vertices, another for multitextured vertices, and so on,
and use the correct format for all appropriate objects.

= Setting the stream source is also a costly operation. Again, rendering calls should be batched
together to take the most advantage of a single vertex buffer before switching.

= As stated earlier, the more geometry you can process in a single call, the better. This applies to
DrawPrimitive as well. In some cases, you might not be able to send thousands of vertices at

the same time, but in general, do as much as you can.

Most of the rules of thumb can be summed up by the frequently heard rule “Batching is everything.”
Always maximize the amount of work you can do in a single call, and minimize the number of times you
force the device to switch to a new state. In my work, | almost never lock the vertex buffer (except
during initialization), and | minimize how often | reset anything. If you are frequently locking the buffer or
making format changes, take a good long look and ask yourself whether you really need to do that.
Chances are pretty good that you'll find many ways to optimize your code. But remember, the best way

to optimize is by experimenting and finding the best approach for the given task.

Finally, Something on the Screen!

For a graphics book, you’'ve now gone an awfully long time without anything to look at. Remember,

patience is a virtue! The code included on the CD for this chapter is extremely simple, but it

89

demonstrates all the key concepts I've discussed. | struggled with the idea of how to show graphics
without talking about transformations and how to show transformations without talking about graphics. |
finally decided to have this sample use pretransformed vertices and the next chapter explain

transformations. Therefore, all the vertices in this sample are represented in screen coordinates.

As promised, the code for this chapter builds off your previously developed framework. | made one very

small change to the CHostApplication class (disabling the call to create the device), and | changed

® Executable.cpp to instantiate a new class. The rest of the code is contained in the
CVertexApplication class, which is derived from CHostApplication. Let's take a look at the

class definition in Vertex™® Application.h.

You need to include the base class definition before you can build off it. This new class inherits all the
basic functionality from CHostApplication and overrides several of the virtual functions you built into

the framework:

#include "Application.h"

class CVertexApplication : public CHostApplication

{

public:

These three functions handle the creation, filling, and destruction of the vertex buffer. You build them as

their own functions because you can call them on initialization or when the device is reset. In this

sample application, the buffer is also refilled with a circle before each render:
BOOL CreateVertexBuffer () ;
BOOL FillVertexBuffer();

void DestroyVertexBuffer () ;

The constructor and destructor handle some basic initialization and clean-up, but most of the real work

is done by the following functions:
CVertexApplication() ;

virtual ~CVertexApplication();

You call this after the D3D object is created. Here you create the actual device and the vertex buffer:

virtual BOOL PostInitialize();

This function makes sure that the vertex buffer is released before the framework destroys the device:

virtual BOOL PreTerminate();

You call these functions when the device is lost. PreReset handles releasing the vertex buffer before

the device is reset, and PostReset recreates the buffer once the device has been reset:

virtual BOOL PreReset ();

90

virtual BOOL PostReset () ;

This is the function you've been waiting for. This function renders your vertices onto the screen and

opens up a whole new world of rendering:

virtual void Render () ;

This is your vertex buffer. This is the reason you are here.

LPDIRECT3DVERTEXBUFFER8 m pVertexBuffer;
i
As you can see, the class is pretty straightforward. You just have to make sure that the vertex buffer is

created and destroyed at the appropriate times and draw it when the framework asks you to. Let's see

the actual implementation in Vertex® Application.cpp.

Make sure to include the class definition:

#include "VertexApplication.h"

Here you define the format and associated structure for a vertex with a pretransformed position and a

simple color. You set all the vertex colors to white, but you could experiment with other colors:

#define D3DFVF SIMPLEVERTEX (D3DFVF XYZRHW | D3DFVF DIFFUSE)

struct SIMPLE VERTEX
{
float x, vy, 2z, rhw;
DWORD color;
i
This sets the number of vertices to process and draw. Changing this number draws more or fewer

vertices on the screen. | have picked a high number to ensure you have something to look at:

#define NUM VERTICES 1000

This defines a simple random-number macro. This application fills the screen with randomly placed
circles, so this macro simplifies the creation of random float values in the range of 0.0 to 1.0 that you

can then multiply by the width and height of the device:

#define RANDOM NUMBER ((float)rand() / (float)RAND MAX)

The constructor initializes the vertex buffer pointer to NULL so that you aren’t dealing with some random

garbage pointer.

CVertexApplication::CVertexApplication ()

91

m pVertexBuffer = NULL;

The destructor handles any cases where the vertex buffer has not been released. This could happen if

you had some other failure in the framework:
CVertexApplication::~CVertexApplication ()

{

DestroyVertexBuffer();

PostInitialize tries to create a device using the convenience function you built into the framework.
If this fails, you don’t even try to create the vertex buffer. If it succeeds, the application tries to create the

buffer:
BOOL CVertexApplication::PostInitialize ()
{
if (FAILED (EasyCreateWindowed (m hWnd, D3DDEVTYPE HAL,
D3DCREATE HARDWARE VERTEXPROCESSING)))
return FALSE;

return CreateVertexBuffer():;

Here you attempt to create a vertex buffer that will exist in video memory. The flags have been chosen
to maximize the performance for a simple point list. Also, because the memory pool is the default, the
device will not recreate the buffer if it is lost. This is a good platform for simple experiments. Change the
flags and see what happens. Also, change the memory pool to managed and remove the code from the

reset functions. Because this is your first and most simple example, spend some time playing with it:
BOOL CVertexApplication::CreateVertexBuffer ()
{
if (FAILED(m pD3DDevice->CreateVertexBuffer (
NUM VERTICES * sizeof (SIMPLE VERTEX),
D3DUSAGE WRITEONLY | D3DUSAGE DYNAMIC | D3DUSAGE POINTS,
D3DFVF SIMPLEVERTEX, D3DPOOL DEFAULT,
&m_pVertexBuffer)))

return FALSE;

92

This is a simple optimization example. For this application, you know you are never going to use a
different buffer or a different format, so you set them here and forget about it. This is better than calling

these functions every time you render a frame. When the device gets reset, the buffer is recreated and

these calls are repeated:

m_pD3DDevice->SetVertexShader (D3DFVF SIMPLEVERTEX) ;
m_pD3DDevice->SetStreamSource (0, m pVertexBuffer,
sizeof (SIMPLE VERTEX)) ;

return TRUE;

This function destroys the vertex buffer and reinitializes the pointer:
void CVertexApplication::DestroyVertexBuffer ()

{

if (m _pVertexBuffer)

m_pVertexBuffer->Release();

m pVertexBuffer = NULL;

PreReset cleans up the buffer that was associated with the lost device. It is necessary to release this

buffer before the device is reset:
BOOL CVertexApplication: :PreReset ()
{

DestroyVertexBuffer();

return TRUE;

PostReset is called after the device has been reset. It must recreate the vertex buffer that was lost
when the device was lost. To verify these functions, use a full-screen device and switch applications

and then switch back:

BOOL CVertexApplication::PostReset ()

{

return CreateVertexBuffer():;

93

Each time you render, you refill the buffer and tell the device to draw the contents. This call draws the

entire buffer:
void CVertexApplication: :Render ()
{

FillVertexBuffer () ;

m_pD3DDevice->DrawPrimitive (D3DPT POINTLIST, 0, NUM VERTICES);

This function is called before the device is destroyed. Under normal conditions, this is where the vertex

buffer will be destroyed:
BOOL CVertexApplication::PreTerminate ()
{

DestroyVertexBuffer();

return TRUE;

This function handles refilling the buffer with data. In this sample, you are using many points to
approximate a circle. Please note: This is a really bad way to draw circles, but it does show off the

mechanics of using vertices:
BOOL CVertexApplication::FillVertexBuffer ()
{

if (!m pVertexBuffer)

return FALSE;

SIMPLE VERTEX *pVertices;

You attempt to lock the buffer as efficiently as possible. Because you are refilling the whole buffer, you

can discard the old one. If for some reason something fails, you stop:
if (FAILED(m pVertexBuffer->Lock (0, NUM VERTICES *
sizeof (SIMPLE VERTEX),
(BYTE **)é&pVertices,

D3DLOCK_DISCARD)))

DestroyVertexBuffer () ;

return FALSE;

94

}

float XOffset 640.0f * RANDOM NUMBER;

float YOffset = 480.0f * RANDOM NUMBER;

Because you are dealing with pretransformed vertices, the position of the vertices is given in screen
coordinates. You use these values because the default windowed device is 640x480. If you have
changed the function or changed the device, you should change these values. The values of Z and

RHW are set to default values of 1.0:

for (long Index = 0; Index < NUM VERTICES; Index++)

{

float Angle = (float)Index / (float)NUM VERTICES * 2.0f * D3DX PI;

pVertices[Index].x = XOffset + 50.0f * cos(Angle);

pVertices[Index].y = YOffset + 50.0f * sin (Angle);

pVertices|[Index].z = 1.0f;

pVertices[Index].rhw = 1.0f;

pVertices[Index].color = Oxffffffff;

}

m_pVertexBuffer->Unlock();

return TRUE;

You might notice that | just finished telling you to lock the vertex buffer as infrequently as possible, but
here | am doing it every frame. Am | a hypocrite? Maybe, but this is one example where it makes sense
to lock the buffer because pretransformed vertices must be transformed by your code. In the next
chapter, | talk about how to change the data on the GPU without locking. For now, the expected output
appears in Figure 8.3. The window should show a circle moving randomly around the screen. Please

note that this isn’t the best way to draw a circle, but | wanted to put something simple on the screen.

95

Er -o| x|

Figure 8.3: Your first real application.

You're starting simple, but things are about to get more interesting pretty quickly.

In Conclusion...

The purpose of this chapter was to explain the fundamentals of creating and managing vertices. The

first sample is boring, but if you understand the code and some of the performance considerations, you

have a good foundation for the next chapters. Let’s recap the important bits:

] A vertex can be defined as a point in space that serves as the building block for rendering points,
lines, and surfaces.

= Vertex formats define the attributes of the vertices.

= Vertices should be created in vertex buffers. We are purposely ignoring the cases where they are
not.

= Vertices should be created and locked with flags that are carefully selected based on the way they
are going to be used. Always optimize the way they move between system and video memory.

= There are several optimization rules of thumb, but the underlying rule is that operations and data
should be batched in such a way as to minimize the amount of switching and to maximize the data
passed to the device.

= The code for this chapter created nothing more than a bad TV set, but it illustrates many of the

fundamentals that remain important in the coming chapters.

Chapter 9: Using Transformations

® Download CD Content

Overview

In Chapter 3, you took a look at matrices and saw how you could use them to produce transformations,
such as translation and rotation; but without any graphics, | could only talk about them in the abstract.

Now that I've discussed vertices, | can talk about how transformation matrices can affect those vertices.

96

In this chapter, | talk about how you use these matrices with the Direct3D device. The code for this
chapter is on the CD in \Code\Chapter09. This chapter covers the following concepts:
= Understanding transformations.

" The world transformation.

= The view transformation.

= Building complex transformations.

= The projection transformation.

" Using transformations with the Direct3D device.

= Using matrix stacks.

" Setting the viewport.

= Using transformations in the application.

= Understanding performance implications.

What Do You Mean by Transformations?

To best understand how you use transformations when creating 3D graphics, consider the following.
Imagine you are in a theme park, taking a photograph of a merry-go-round. The merry-go-round has a
shape and geometry, but it also has some position and orientation in space. You have some position in
space as well (on the ground). The correlation between the position of the merry-go-round and your
position and orientation determines whether it is behind you, in front of you, and so on. Also, the lens of
the camera has some effect on the final outcome of the picture. A zoom lens makes the object appear
closer or farther. You point and shoot, and the picture is “rendered” onto the film. The film itself also
affects the contents of the photo. The format of the film determines the size and resolution of the final
picture. In this example, the final image on the picture is a product of how the object’s position, your
position, the camera lens, and the film interact to map the three-dimensional features of the merry-go-
round to the two-dimensional image on the film. Transformations in 3D graphics work exactly the same
way. In 3D graphics, we have world transformations determining the position of objects in the scene, a
view transformation determining the camera position, a projection transformation determining the
properties of the “lens” of the camera, and a viewport, which maps the information to actual pixels. Let's

take a look at each transformation and then bring them all together.

The World Transformation

As | talked about in the last chapter, you use vertices define 3D objects. These vertices each represent
a position in space, and that position is relative to some origin. But when you render a 3D scene, you
want to be able to move objects around the 3D world. As you saw in the last chapter, you could
manipulate each vertex to a new position in the world, but a better way is to use a world-transformation
matrix and allow the 3D hardware or software to process each vertex in the transformation pipeline. The
most basic usage of the world matrix is to easily move a predefined object around a virtual space, but
there is another side benefit. You can use it to easily draw several instances of the same object by
using one vertex buffer with several different transformation matrices. Of course, the hardware must

transform the vertices multiple times, but using only one set of geometry saves memory and bandwidth

97

to the video card. Figure 9.1 shows the same geometry rendered twice in two different positions and

orientations. In terms of the geometry data being sent to the video card, there is only one model.

Figure 9.1: Two instances of transformed geometry.

The View Transformation

Whereas the world transformation defines the position and orientation of objects in space, the view
transformation defines the position and orientation of the camera in space. Vertices converted to world
coordinates after the world transformation are said to be in eye coordinates after the view
transformation. Once an object is in eye coordinates, the basic geometric relationship between the
object and the viewer is known. In practical terms, you can use the world transformations to build a 3D
world and the view transformation to move a camera around the world. Figure 9.2 shows the objects

from Figure 9.1 from two different viewpoints.

il ot

Figure 9.2: Scene from Figure 9.1 from two different viewpoints.

Building World and View Transformations

Although world and view matrices are conceptually different, they are the same mechanically, meaning
that the way the transformation matrices are built is the same for both types of transforms. As | began
discussing in Chapter 3, transformation matrices adhere to certain formats, and you can concatenate
those matrices with multiplication. In this chapter, | can talk about how these matrices actually affect the
geometry. In the following examples, | discuss how you can manipulate the world matrix to move
geometry in a scene, but keep in mind that the same operations apply to moving the camera with the

view matrix.

Figure 9.3a shows an overhead view of some simple geometry defined around the origin. To
understand how transformations work, it's best to think about not only the geometry, but also the
coordinate system of the geometry, or model coordinates. Understanding how transformations work is

easier if you imagine that the transformations are affecting the coordinate system and the vertices are

98

just along for the ride. For instance, Figure 9.3b shows the effect of applying a translation matrix. It
moves not only the vertices, but also the coordinate system. Figure 9.3c shows the effect of applying a

rotation matrix. Notice that the coordinate system rotates.

|
.1|-

s
] .
[e] ", %

Figure 9.3: The effects of simple transformations.

Understanding the effect on the coordinate system is key to understanding the effect of multiple
matrices and why the order of operations is so important when building a matrix. Figure 9.4a shows the
effect of translation followed by rotation. This sequence of operations moves the coordinate system and
then rotates the axes about a new center. Figure 9.4b shows the effect of rotation followed by
translation. Here the results are very different. First the coordinate system rotates, and then the
translation occurs along the new rotated axes. If you were animating Figure 9.4, the first sequence
would produce a simple rotation at some offset position, and the second sequence would produce more
of an orbiting effect. As you can see, order definitely matters. Rotations affect not only the geometry
itself, but also the coordinate system, so translations that occur after rotations might not necessarily

happen in the direction you think they should.

Figure 9.4: The effects of multiple transformations.

Another potential problem to recognize is the effect of geometry that is offset from the origin. This can
happen if the geometry was defined in a modeling package, and the model was not centered where you
think it should be. Figure 9.5 shows geometry that is not centered on the origin. This is the equivalent to
a “built-in” translation matrix. Therefore, all transformations should take that into account. For instance,
if a rotation matrix is applied, the result is an orbiting effect because the axes rotate, but the geometry
maintains a constant distance from the axes. You could solve the problem by first translating the model
to the origin. This will nullify the built-in translation, and then you can rotate. Of course, the easiest way

to deal with this is to make sure your models are centered on an appropriate point. If you are building

99

your own models, this isn’t too much of an issue. However, in my experience, models you can download

or buy frequently need cleaning up before you can transform them nicely.

\:

- — -
+X,

Figure 9.5: Geometry offset from the origin.

The preceding caveats also apply to scaling. If scaling is applied last in the order of operations, it scales
only the geometry. If a scaling matrix is applied somewhere in the middle of the operations, it affects all

the transformations that occur after it.

| can’t stress enough the importance of the order of operations. The key to understanding the effects of
transformations is visualizing how each step affects the coordinate system and the impact it has on later
steps. These transformations affect how objects and viewers move throughout the world. Next, you will
look at the projection transformation, which is still matrix based but is not based on translations and
rotations.

The Projection Transformation

The projection transformation is perhaps the most complicated transformation to visualize. Unlike the
world and view matrices, which encode positions and rotations, the projection matrix encodes properties
of the virtual camera. These properties create a view frustum, which is the volume of space viewable by

the camera. The frustum is shown in Figure 9.6.

1|> «<{[m

\w-‘-"ani"'--.__

Figure 9.6: The view frustum.

The near and far planes define the distances in which objects are visible. Objects that are either too

close or too far are not included in the final rendering. The field-of-view (FOV) angle defines the width

100

and height of the view. For instance, a zoom lens has a lower field of view, meaning that a smaller part

of the view occupies a larger part of the image, which makes the final zoomed object bigger.

The features of the projection matrix determine how the vertices in eye coordinates are mapped to

window coordinates, in some cases applying perspective and clipping geometry outside of the frustum.
This leads to one optimization point. The pipeline must process all points within the frustum. If possible,
limiting the range of the far plane could limit the amount of data that must be processed. Depending on

the situation, you might want to be sure that you do not overextend your planes.

Later in this chapter, you'll look at other factors that influence the way the projection matrix is used to
produce the final screen output. For now, it's important to note that the projection transformation is the
last of the three main transforms. It defines the lens of your virtual camera. Figure 9.7 shows the same
scene rendered with two different projection matrices. The camera in the second matrix has a lower

FQOV, effectively a zoom lens.

Figure 9.7: Scene from Figure 9.1 with two different “lenses.”

The D3DX library contains 10 different functions for creating projection matrices. There are left-handed
and right-handed versions of each of five types. Handedness basically determines whether the positive
Z direction is going toward or away from the viewer. Because DirectX uses a left-handed system (+Z

leading away from the viewer), | concentrate on the five left-landed types, as shown in Table 9.1.

Table 9.1: D3DX Projection Matrix Functions

Function Name Comments

D3DXMATRIX* D3DXMatrixPerspective This function generates a projection
FovLH (D3DXMATRIX *pOut, FLOAT FOV, matrix based on a field of view, the
FLOAT AspectRatio, FLOAT ZNear FLOAT aspect ratio of the viewport, the
ZFar) ; distance of the near plane from the

viewer, and the distance of the far plane
from the viewer. Remember that the

FOV is in radians.

D3DXMATRIX* D3DXMatrixPerspectiveLH This function generates a projection
(D3DXMATRIX *pOut, FLOAT Width, matrix based on the distances of the
FLOAT Height, FLOAT ZNear, FLOAT ZFar) near and far view planes, as well as the

101

Table 9.1: D3DX Projection Matrix Functions

Function Name Comments

width and height of the viewport.

D3DXMATRIX* D3DXMatrixPerspective You can use this function to generate a
OffCenterLH (D3DXMATRIX *pOut, custom projection matrix based on
FLOAT XNear, FLOAT XFar, FLOAT YNear, properties of the view volume.

FLOAT YFar, FLOAT ZNear, FLOAT ZFar);

D3DXMATRIX* D3DXMatrixOrthoLH This function generates an orthographic
(D3DXMATRIX *pOut, FLOAT Width, (perspectiveless) matrix with the origin
FLOAT Height, FLOAT ZNear, FLOAT ZFar); in the center of the screen. This is

extremely useful for the chapters that

concentrate on 2D graphics.

D3DXMATRIX* D3DXMatrixOrthoOffCenterLH This function generates an orthographic
(D3DXMATRIX *pOut, FLOAT XNear, (perspectiveless) matrix with an
FLOAT XFar, FLOAT YNear, FLOAT YFar, arbitrary origin.

FLOAT ZNear, FLOAT ZFar);

These functions provide an easy way to create projection matrices. For 3D examples, | mostly use
D3DXMatrixPerspectiveFovLH because its parameters fit best with a camera analogy. 2D
examples use D3DxMatrixOrthoLH to demonstrate the advantages of using a projection matrix that

does not have perspective.

Now that you have taken a look at all the matrices, look at how you actually use them.

Transformations and the D3D Device

Of course, all of the preceding is just more boring theory unless you can use it effectively in your DirectX
application, so let’s talk about how these transformations are actually used. The first thing to remember
is that the device stores only one transformation at a time for each of the three types | have talked about
so far. (There are more types, which | talk about later.) Therefore, once you set a given transform, that
transform is applied to all objects until the transform is changed. This is great for things that probably
don’t change that often, such as the projection matrix, but you should be aware that transformations you

set for one piece of geometry affect subsequent ones unless you explicitly set the transform.

Once you have your transformation matrices, set the transforms by calling SetTransform:
HRESULT IDirect3DDevice::SetTransform (D3DTRANSFORMSTATETYPE State,

CONST D3DMATRIX *pMatrix);

The first parameter specifies the transform that should be set. The following code shows how to set the

three transformations I've talked about so far:

102

m_pD3DDevice->SetTransform(D3DTS PROJECTION, &m ProjectionMatrix);
m_pD3DDevice->SetTransform(D3DTS VIEW, &m ViewMatrix);

m_pD3DDevice->SetTransform(D3DTS _WORLD, &m WorldMatrix);

You can set these transforms as frequently or infrequently as needed, but they affect everything that is

rendered while they are set.

Using Matrix Stacks

OpenGL programmers are accustomed to the notion of a stack that manages transformation matrices.
Although DirectX doesn’t have a built-in notion of stacks the way OpenGL does, the D3DX library does
include a helper interface called ID3DXMatrixStack. This interface contains basic stack operations
such as pPush and Pop, as well as several methods to help build transformations. However, unlike in
OpenGL, you must explicitly pass the contents of the stack to SetTransform because the device itself
does not maintain a stack. Stacks can be useful when you use them to track and manage the state of

transformations while rendering a complex object. For example, consider the ship shown in Figure 9.8.

Ship Hig

Figure 9.8: A relatively complex ship model.

Suppose you know the position and the orientation of the ship at sea, and you also know the position of
the turret relative to the ship and the position of the barrels relative to the turret. Instead of computing
multiple matrices for each object and then storing each matrix, you can use a stack and render the ship
with the following steps:

1. Create a stack interface with D3DXCreateMatrixStack.
. Compute the matrix for the ship’s position and push that onto the stack.
. Set the top of the stack as the current world transform and render the hull.
. Push the stack and concatenate the relative transform for the turret.
. Set the top of the stack as the current world transform and render the turret.
. Push the stack and concatenate the relative transform for the first barrel.

. Set the top of the stack as the current world transform and render the first barrel.

0 N O O »~ WODN

. Pop the stack, which places the turret transform on top.

9. Push the stack and concatenate the relative transform for the second barrel.

10. Set the top of the stack as the current world transform and render the second barrel.
11. Pop the stack, which places the turret transform on top.

12. Pop the stack, which places the ship transform on top.

13. Render the other parts of the ship the same way.

103

Most of the examples in this book deal with simple objects, so | do not use stacks because | don’t need
them and to keep things simple. However, if you are rendering complex objects, keep in mind that a

matrix stack can be a valuable tool to help manage multiple matrix changes.

The matrix stack is the last concept that concerns the actual transformation matrices. Whether you
manage the transformations with a stack or with a set of matrices, you have now gone through the

matrix-based transformations. One last transformation maps data to the actual window.

The Viewport

Viewports do not involve transformation matrices, but they do make sense to discuss at this point. Once
the three transformation steps are done, the device still needs to determine how the data is finally
mapped to each pixel. You help the device do this by defining a viewport. Under normal circumstances,
the viewport is defined by the size of the window in a windowed application or the resolution of the
screen in a full-screen application, so many times you don’t need to set it explicitly. However, DirectX
also allows the programmer to specify a portion of the window as a viewport. This can be useful when
rendering multiple views in the same window or using other effects such as a sniper scope. In the

sample application for this chapter, you will create multiple viewports to show different transformations.

A viewport is defined with the D3DVIEWPORTS structure. This structure defines the rectangular position
of the viewport within the window or screen, as well as the near and far Z planes. Before setting a new

viewport, it's usually a good idea to save a copy of the old one with GetViewport:

HRESULT IDirect3DDevice: :GetViewport (D3DVIEWPORT8 *pViewport);

This is a good idea because the viewport should probably be reset when you are done rendering. Like
the transformations, the current viewport continually affects rendering until it is set to something else. If
you don'’t reset the viewport, other pieces of code might make assumptions that turn out to be incorrect.

Once you save a copy of the viewport, you can set a different one with SetViewport:

HRESULT IDirect3DDevice::SetViewport (D3DVIEWPORT8 *pViewport);

This defines a new subsection of the window, and drawing occurs in that rectangle. If the new viewport
is outside of the device boundaries, setViewport fails. One important thing to keep in mind is that the
ratio of the dimensions of the viewport should match the aspect ratio of the projection matrix (or vice

versa). If not, objects can appear squished.

Putting It All Together

| think that the best way to illustrate the concepts from this chapter is to demonstrate them in practice.

The sample application for this chapter builds on the code from the previous chapter, applying

transformations to your simple circle of points. Because there is so much duplicated code, | only discuss

the new material, but the actual source code on the CD is complete.

This application renders four different views of the same vertex buffer. Each view applies a different

world transform, demonstrating the effects of the order of operations. Before | get started discussing the

104

code, it's important to remember that the following code is just the tip of the iceberg in terms of what you
can do with transformations. | strongly encourage you to experiment with this code, changing the order

of operations or adding new operations. After discussing the code, | suggest a few exercises you can try.

As always, take a look at the header file for your new class, Transform® Application.h:

class CTransformApplication : public CHostApplication

{

public:

This is your only new function. This function is called when the application starts and needs to build a
new set of viewports. In the full source-code listing, you also include Render, PostReset, and so on,

as well as the member variables for your old vertex buffer:

void InitializeViewports():;

These are your new transformation matrices for the three main transforms. The view matrix is set once

at the very beginning of the application, and the projection and world matrices are set every frame:
D3DXMATRIX m WorldMatrix;
D3DXMATRIX m ViewMatrix;

D3DXMATRIX m ProjectionMatrix;

The last member variables are the new viewports. Each viewport shows the circle from Chapter 8 with a
different transformation matrix applied. The transformations are rotation, scaling-rotation-translation,

translation-rotation, and rotation-translation-rotation-scaling.
D3DVIEWPORT8 m RViewport;
D3DVIEWPORT8 m SRTViewport;
D3DVIEWPORT8 m TRViewport;
D3DVIEWPORT8 m RTRSViewport;
i

| go into more detail about the actual transformations in Transform® pplication.cpp, shown next.

Remember, | show only the new code:

Now that you are going to be using actual transforms, you use the standard FVF format for vertices and
drop the RHW member from the vertex structure:

#define D3DFVF SIMPLEVERTEX (D3DFVF XYZ | D3DEFVF DIFFUSE)

struct SIMPLE VERTEX

{

float x, vy, z;

105

DWORD color;
i
For this application, you limit your number of vertices to a small number so that there are gaps between
the points. This helps you see the rotations:
#define NUM VERTICES 20
BOOL CTransformApplication::PostInitialize ()

{

This is just another windowed application. Feel free to try the full-screen version using the full-screen

creation function:
if (FAILED (EasyCreateWindowed (m hWnd, D3DDEVTYPE HAL,
D3DCREATE_HARDWARE_VERTEXPROCESSING)))

return FALSE;

| haven't really talked about render states yet, but here you disable lighting. The reason you need to do
this is that the vertices are moving through the transformation and lighting pipeline. If you don’t disable

lighting, everything will be black (because you don’t have any lights), and there will be nothing to see!

m_pD3DDevice->SetRenderState (D3DRS_LIGHTING, FALSE)

Here you set the view matrix to the identity matrix. This means that the viewer is sitting at the origin
facing in the positive Z direction. For this example, you don’t move the viewer, but | talk about how you

can change that:
D3DXMatrixIdentity (&m ViewMatrix);

m _pD3DDevice->SetTransform(D3DTS VIEW, &m ViewMatrix);

The last new thing is the initialization of the new viewports that will be used to render the different views
of the vertices. All vertex buffer initialization code is the same as in the last chapter except that the new

vertices do not have the RHW member:
InitializeViewports();

return CreateVertexBuffer ()

The first thing you do is get the current viewport so that you know the dimensions. Each of your
viewports occupies a quarter of the main viewport. The following code simply breaks the viewport into

four subrectangles:

void CTransformApplication::InitializeViewports ()

{

106

D3DVIEWPORT8 MainViewport;

m_pD3DDevice->GetViewport (&MainViewport) ;

m RViewport.Width = m SRTViewport.Width = m TRViewport.Width =

m RTRSViewport.Width = MainViewport.Width / 2;

m RViewport.Height = m SRTViewport.Height = m TRViewport.Height =

m RTRSViewport.Height = MainViewport.Height / 2;

m RViewport.Y = m SRTViewport.Y = 0;

m RViewport.X = m TRViewport.X = 0;

m TRViewport.Y = m RTRSViewport.Y = MainViewport.Height / 2;

m_ SRTViewport.X = m RTRSViewport.X = MainViewport.Width / 2;

m RViewport.MinZ = m SRTViewport.MinZ =
m_TRViewport.MinZ = m RTRSViewport.MinZ = 0.0f;
m RViewport.MaxZ = m SRTViewport.MaxZ =

m_TRViewport.MaxZ = m RTRSViewport.MaxZ = 1.0f;

One thing to remember is that the Z limit of each viewport ranges from 0.0 to 1.0. This is because the
depth buffer is normalized to 1.0 no matter what distance you set for the far Z plane of the frustum.
Each viewport can have a custom depth range, but here you set each one to have the full range. Once

the viewports are set up, the application begins rendering:

void CTransformApplication::Render ()

{

Because this is a windowed application, the user can resize the window to some new aspect ratio. Here
you get the client rectangle of the window and use that to build a projection matrix with the proper

aspect ratio. Notice also that the field of view is given in radians. This is very important because if you

make the mistake of thinking in degrees, your projection matrix will produce unexpected results:
RECT WindowRect;
GetClientRect (m_hWnd, &WindowRect);
D3DXMatrixPerspectiveFovLH (&m ProjectionMatrix, D3DX PI / 4,
(float) (WindowRect.right - WindowRect.left) /

(float) (WindowRect.bottom - WindowRect.top),

107

1.0£, 100.0f);

m_pD3DDevice->SetTransform(D3DTS PROJECTION, &m ProjectionMatrix);

Here are your four matrices that will serve as building blocks for your four transformations. You can use

each of these together to produce more complex transformations:
D3DXMATRIX RotationMatrixl;
D3DXMATRIX RotationMatrix2;
D3DXMATRIX TranslationMatrix;

D3DXMATRIX ScalingMatrix;

The first thing you do is save a copy of your current viewport. This is so you can restore the viewport to

its initial condition once your four viewports are rendered:

D3DVIEWPORT8 MainViewport;

m_pD3DDevice->GetViewport (&MainViewport) ;

Your two rotation matrices use the system timer to generate some arbitrary rotation about the Z-axis. It's
not terribly important what the rotation actually is, and this is the easiest way to make up some value.
You use the first matrix for simple rotations. The second matrix rotates in the opposite direction; it is
used in the viewport that shows an orbiting effect. The second rotation matrix corrects for the first

rotation, creating the effect of an orbit without rotating the geometry:
D3DXMatrixRotationZ (&RotationMatrixl, (float)GetTickCount ()
/ 1000.0f) ;
D3DXMatrixRotationZ (&RotationMatrix2, - (float)GetTickCount ()

/ 1000.0f) ;

The translation and scaling matrices are pretty simple. The translation matrix moves the coordinate

system three units in the positive X direction, and the scaling matrix scales Y values by one half;
D3DXMatrixTranslation (&TranslationMatrix, 3.0f, 0.0f, 0.0f);

D3DXMatrixScaling (&ScalingMatrix, 1.0f, 0.5f, 1.0f);

This is your first and simplest viewport. It shows the effect of a simple rotation matrix. The viewport is

set to the upper-left corner, the world transform is set, and the vertex buffer is rendered:
m_pD3DDevice->SetViewport (&m RViewport);
m WorldMatrix = RotationMatrixl;
m_pD3DDevice->SetTransform (D3DTS _WORLD, &m WorldMatrix);

m_pD3DDevice->DrawPrimitive (D3DPT POINTLIST, 0, NUM VERTICES);

108

This is @a more complex combination of transformations. This code applies a scaling matrix, followed by
a rotation and translation. This creates the orbiting effect described earlier, but notice how the scaling
factor scales the Y values of both the circle and the orbit. The orbit is now elliptical because the scaling
factor affects the translation values. Notice that the scaling factor does not scale the magnitude of the
angle of rotation, only the translation. Also, remember that the actual multiplication order is the reverse

of the order in which each transformation is applied:
m_pD3DDevice->SetViewport (&m SRTViewport);
m WorldMatrix = TranslationMatrix * RotationMatrixl * ScalingMatrix;
m_pD3DDevice->SetTransform (D3DTS WORLD, &m WorldMatrix);

m_pD3DDevice->DrawPrimitive (D3DPT POINTLIST, 0, NUM VERTICES);

This is another relatively simple transformation. Here, the object is translated and then rotated. Again,

notice the order of multiplication:
m_pD3DDevice->SetViewport (&m TRViewport) ;
m WorldMatrix = RotationMatrixl * TranslationMatrix;
m_pD3DDevice->SetTransform (D3DTS WORLD, &m WorldMatrix);

m_pD3DDevice->DrawPrimitive (D3DPT POINTLIST, 0, NUM VERTICES);

Here is your most complex transformation. The object is first rotated and translated, producing the orbit
effect. It is then rotated in the opposite direction by the second rotation matrix, which corrects the actual
rotation of the geometry. Finally, the scaling matrix squashes the geometry along the Y-axis. However,
notice that, unlike the previously scaled transformation, the actual path of the orbit is circular. This is
because the scaling matrix is applied at the end. It only affects the geometry, not the other

transformations:
m_pD3DDevice->SetViewport (&m RTRSViewport) ;
m WorldMatrix = ScalingMatrix * RotationMatrix2 *
TranslationMatrix * RotationMatrixl;
m_pD3DDevice->SetTransform (D3DTS _WORLD, &m WorldMatrix);

m_pD3DDevice->DrawPrimitive (D3DPT POINTLIST, 0, NUM VERTICES);

The last thing you do is reset the viewport. This is especially important in your framework because you
clear the viewport in the base class. If you did not reset the viewport to the entire window, Clear would

clear only the last viewport you set.

m_pD3DDevice->SetViewport (&MainViewport) ;

109

In general, different parts of a 3D rendering application should clean up after themselves. This step
becomes very important when | talk about textures and render states. Figure 9.9 shows what the

application should look like.

Figure 9.9: Examples of different transformations.

Suggested Exercises

The sample application for this chapter should provide a pretty good basis for understanding the effects
of different transformations, but there is always more you can do. Here are a few suggested exercises
you can try:

1. Set the view transform instead of the world transform. For simple rotations about the Z-axis, this
should produce nearly the same results as setting the world transform, provided that you set the
world transform to the identity matrix.

2. Experiment with different values for the FOV of the perspective matrix. Lower values should
produce a zoom effect. Higher values will “zoom out.” Beware of values that are either too large
or too small. Values that are too small might zoom too much; values that are larger that 180
degrees will flip the axes. Once you understand the limits, it can be worthwhile to explore the
effect of exceeding them. That way, you'll recognize the error if you ever see that as a bug in
your program.

3. Try many different transforms with different orders of operation. The more familiar you can get
with the effects, the less likely you’ll make a mistake.

4. Add keyboard support by incrementing some value in the message handler as a response to a
WM _KEYDOWN message. Then use that value in your rotations or translations.

5. Use the ID3DXMatrixStack to manage transformations. Look through the SDK documentation

and rework the matrices to use the stack functions.

You can try many variations. The important thing is that you leave this chapter with a good

understanding of how different transformations affect the final output on the screen.

Performance Considerations

110

There aren’t many performance considerations to worry about when setting transforms. Of course, there
is a slight cost associated with setting transforms and computing matrices, but it's minimal. In general,
batching is always a good thing, but don’t worry too much about the cost of SetTransform. In fact, a
call to setTransform is probably cheaper than locking the vertices and transforming them on the CPU.
In most cases, it is best to take advantage of the hardware T&L and use matrices to transform data. It is
much cheaper to send 16 floating-point values to the card than it is to send several thousand new

vertices.

In Conclusion...

Applying transformations can be powerful, useful, and confusing. As always, review some of the more

important points:

] You can use world matrices to move geometry around the virtual scene.

] You can reuse geometry by rendering a vertex buffer multiple times with different world
transformations.

= The view matrix controls the position and orientation of the virtual camera.

= The projection matrix controls the lens of the virtual camera, setting perspective and field of view.

= You can build complex transformations by concatenating multiple matrices.

= Order matters when concatenating matrices.

= You can use stacks to manage complex transformations.

Chapter 10: From Vertices to Geometry

® Download CD Content

Overview

Face it: simple vertices are boring. This work doesn’t really get interesting until you learn about surfaces,
triangles, and geometry. Things are about to get interesting. In previous chapters, | tried to set things up
as much as possible. | talked about vertices as a basis for geometry. | talked about transformations so
that you can easily present and view the geometry. Now, you have all the necessary pieces to see how
vertices are used to build something more interesting. This chapter does not talk about lines,
concentrating instead on triangles. However, all the points made here also apply to lines. (There’s a pun
in there somewhere.) I'm not spending time on lines because once you understand triangles, the line
primitives should be extremely easy to handle if you need to. One thing to remember in this chapter is
that you will need to involve some concepts that you haven’t yet fully explored, such as lighting. If you
don’t fully understand these new concepts, don’t worry; you will fully explore them in later chapters. The
code for this chapter is located on the CD in the \code\Chapter10 directory. This chapter introduces the
following concepts.

] Using vertices to build surfaces.

" Rendering surfaces.

] Using triangle lists.

111

. Using triangle fans.

= Using triangle strips.

= Rendering indexed primitives.

= Loading and rendering meshes in .X files.

. Performance implications of different rendering techniques.

= Adding mesh rendering to an application.

Turning Vertices into Surfaces

| spent the last couple chapters talking about vertices because they represent positions in space.
However, interesting objects occupy many positions in space, and they are most often represented in
3D graphics by their outer surfaces. These outer surfaces are usually represented by triangles. In the
case of curved surfaces, you can use sets of triangles to approximate the surface to varying degrees of
accuracy. Also, once | start talking about surfaces, it makes sense to talk about surface normals

(vectors that are perpendicular to each surface).

If you are using smooth shading, surface normals are actually represented as vertex normals, where the
normal vector for each vertex is the average of the normal vectors for all the triangles that share that

vertex, as shown in Figure 10.1.

Il aled
WM, PO

Faca noamal

Figure 10.1: Vertex normal on a surface.

The standard DirectX lighting model lights surfaces per vertex. This means that the math for lighting is
computed for each vertex. Because each triangle has three vertices, the device must interpolate the
shaded values across each triangle. The combination of averaged normals as shown in Figure 10.1 and
interpolated shading across each surface creates the smooth shading shown in most of the renderings

in this book.

Because you want to add this new piece of information about normals to your vertices, you have to
expand your vertex format. You do this by redefining your FVF with the D3DFVF NORMAL flag as
defined in Chapter 8. This, along with the position and color information, makes up the minimum format
for rendering lit surfaces. Once you revise your vertex format, | can begin talking about how you actually

render the triangles themselves.

Rendering Surfaces

112

Processing vertices can be expensive if you have too many of them, so the challenge of rendering
surfaces becomes how you represent a given surface with a set of triangles and how to do it in the most

efficient manner.

It turns out that it is not so easy. For instance, if you are modeling a cylinder, the sides of that cylinder
must consist of a collection of flat sides. If you use too few sides, the cylinder appears blocky with
visible edges. If you use too many sides, you might end up using more data than is actually visible to
the eye, causing unnecessary processing. This first problem is usually one an artist must solve using a
modeling program, the constraints of the given project, and a little experimentation. I'm not going to
spend a lot of time talking about that. Instead, | am going to focus on a second problem. Once you know

what your geometry is, how do you render that in the optimal way?

From previous chapters, you know that vertices are stored in vertex buffers. You also know that you can
draw the contents of the vertex buffer by calling DrawPrimitive. You have been using this to draw
sets of vertices, but now it's time to talk about triangles. You can draw three types of triangle primitives:
the triangle list, the triangle fan, and the triangle strip. Let's look at each type individually and explore

the pros and cons of each.

Rendering with Triangle Lists

The triangle list is the easiest of the triangle primitives to understand. Each triangle is represented in the
vertex buffer by a set of three vertices. The first three vertices represent the first triangle, the second

three vertices represent the second triangle, and so on. Figure 10.2 shows how a triangle list uses a set

of vertices.
4 5
2
Face 2
Face 1
1 J B

2 faces renderad with & vertices.

Figure 10.2: Triangles in a triangle list.

You do this with the following call to DrawPrimitive:

113

m _pD3DDevice->DrawPrimitive (D3DPT TRIANGLELIST, 0, 2);

Note that the number of primitives specified in the third parameter is the number of triangles drawn (2),
not the number of vertices used (6). This is the easiest way to represent triangles, but Figure 10.2 also
demonstrates the major drawback. Many times, triangles in a continuous surface share common
vertices, but in a triangle list, each common point is repeated multiple times. Imagine rendering a cube.
Eight points are all you need to define a cube, but a cube rendered with a triangle list requires 12
triangles and 36 vertices. This means that a triangle list requires the hardware to process 28 more
vertices than it needs to. Even in Figure 10.2, the number of required vertices increases by 50 percent.

It makes more sense to reuse vertices, and in fact you can.

Rendering with Triangle Fans

One way of reusing vertices is to use triangle fans. A triangle fan uses the first vertex as a shared vertex

for the rest of the vertices, as shown in Figure 10.3.

1 B 1 4

4 faces rendensd with § verlices 7 TAGEE rerernd wilh & verions
insbaad of 12 vertices resinad of § vertices

Figure 10.3: Triangles in a triangle fan.

This is the first example of reusing vertices, and the following code draws two triangles:

m_pD3DDevice->DrawPrimitive (D3DPT TRIANGLEFAN, 0, 2);

Notice that when drawing two triangles, you still specify two primitives even though the number of
vertices used drops from six to four. However, this is not terribly useful because it only applies well to
circular or fan-shaped objects. Although you can use triangle fans to produce rectangular shapes, it's

usually not the easiest solution. A more general solution is a triangle strip.

Rendering with Triangle Strips

Triangle strips provide a way to reuse vertices by rendering long strips in sequences, such as the one

shown in Figure 10.4.

114

1 3

5 fncad nervdened with T vercas 2 faces rendened with 4 vertices
nstend of 15 Wacas

Figure 10.4: Triangles in a triangle strip.

Because vertices are reused, this is a better way of drawing sets of triangles than the triangle list. The

code to do this is the same as earlier, with the different primitive type:

m_pD3DDevice->DrawPrimitive (D3DPT_ TRIANGLESTRIP, 0, 2);

The important thing to remember about strips is that the order matters. Because every new vertex is

coupled with the previous two, you need to make sure that the order makes sense.

Another thing to consider with triangle strips is that sharing vertices does have some drawbacks. For
instance, Figure 10.5 shows a typical hard-edged corner. As the figure shows, each side has a different
surface normal. However, the shared vertex can have only one normal vector. This presents a problem
because an averaged normal vector doesn’t produce the correct hard edge for the lighting. One way to
work around this is to create degenerate triangles. A degenerate triangle is not really visible, but
provides a way to transition between vertices by smoothing the normals around the corner. For example,
in Figure 10.5, the two sides of the corner have different surface normals, so instead of the two sides
sharing different vertices, | insert a third thin face between them. If this face were larger and actually
visible, it would show the effect of the different normals, but because it is extremely thin, you never see

it. It is not meant to be visible, only to provide a transition between the faces.

IT I*L‘_.,

Tha inlerpoialed v The misrmesiaie sade alows B
MOl windd producs a fransion from one cormect
noorTect sading on both nrrnal 12 e oorer. Tha R
sides. 1 would nol producs 0 1§ SR D 10 Baner
11 Pl S8 AQEINENCE DETONLTaE hs bechnigs.

|- Hormally. A and B ooy the

SNTHE pOSON, prOdUCng O s [l
thist i§ nol Echellly vidibla 1o the
it

Figure 10.5: Surface normals on a hard edge with and without degenerate triangles.

One last thing to consider is that the strips are usually not easy to derive in complex models. There are
utilities for breaking models into efficient strips, but they can sometimes complicate the authoring
process, and the techniques are not perfect. In the sample code for this chapter, | show that it's easy to

create strips for simple geometric shapes, but the task becomes harder for organic or complex objects

115

such as characters or vehicles. So you have to look for ways to get the vertex to reuse strips and fans

without the complication of authoring strips. And again, you can do that.

Rendering with Indexed Primitives

So far, all of the discussions have been based on vertex buffers where the order of the vertices affects
the triangles you draw. Strips exploit that ordering by basing subsequent triangles off of previous
vertices, but with certain drawbacks. What is needed is a way to render triangles independently of the
order of the vertices in the vertex buffer. This is the conceptual basis of the index buffer. Index buffers
store the indices of vertices in an arbitrary order. You can base multiple primitives on vertices
independently of where each vertex is in the vertex buffer. Also, the index buffer can reference the
same vertex more than once. This offers a performance advantage over triangle lists in that you can
reuse a single vertex multiple times and an authoring advantage over strips in that the process is less

complicated.

You can use index buffers to draw any of the three triangle primitives. In the past, conventional wisdom
has been that indexed triangle strips are the most efficient way to render geometry. However, one
presentation by Microsoft's D3DX team stated that it found little or no performance difference between
rendering indexed triangle lists and indexed triangle strips, at least on the current generation of
hardware. If you think about what is actually happening, this makes sense. Vertices run through the T&L
part of the pipeline before they are used to actually draw the geometry. As long as vertices are not
specified twice (as in nonindexed lists), the performance should be roughly the same for primitives of
any type. Some pieces of hardware can further optimize strips, but the performance gains might be too
small to warrant the hassle of creating strips. If you are concerned with getting the absolute best
performance, you might want to experiment with indexed strips, but in most cases, indexed lists should

be sufficient.
Index buffers are similar to vertex buffers, and they are represented by the IDirect3DIndexBuffers8
interface. A device creates index buffers with calls to CreateIndexBuffer:
HRESULT IDirect3DDevice8::CreateIndexBuffer (UINT Length, DWORD Usage,
D3DFORMAT IndexFormat,
D3DPOOL MemoryPool,

IDirect3DIndexBuffer8 **ppIndexBuffer);

Most of these parameters are the same as described in Chapter 8 for vertex buffers with the obvious
exception of the index buffer itself and the format. Unlike vertex buffers, the format of the indices can
only be D3DFMT INDEX16 or D3DEMT INDEX32, corresponding to 16-bit or 32-bit integers for each
index. Note that because the Length parameter is length of the buffer in bytes, the length is dependent
on the index format. A mismatch between the format and length parameters could lead to failures down

the line.

116

Once the index buffer is created, you need to change the way you render primitives. In addition to
setting the stream source to the desired vertex buffer, you must also set the index buffer with a call to

SetIndices:
HRESULT IDirect3DDevice8::SetIndices (IDirect3DIndexBuffer8

*pIndexBuffer, UINT IndexOffset);

This call takes a pointer to the index buffer and an index offset. The index offset is added to all indices
before vertices are actually fetched. In most cases, the value of this second parameter is 0. Once the

index buffer is set, you can draw indexed primitives with the aptly named DrawIndexedPrimitive:
HRESULT IDirect3DDevice8::DrawIndexedPrimitive (D3DPRIMITIVETYPE Type,
UINT MinIndex, UINT NumVertices,

UINT StartIndex, UINT PrimitiveCount) ;

This call draws indexed primitives based on the currently set index and vertex buffers. The new
parameters MinIndex and NumVertices specify the valid range for indices used in this call. Indices
that are in the index buffer but outside of this range cause this function to fail. Depending on the values
for these two parameters, the device might also try to optimize vertex processing, but in most cases,

you can specify the full range of vertices.

When | start explaining the code for this chapter, | go into more detail about the actual implementation,
but the important thing to remember from this discussion is that there are many ways to render
triangles—and usually the most optimal ways require the minimum of vertex data. In most cases,
rendering the data as indexed triangle lists is a good solution, and that's the way many models are

stored in DirectX’s .X file format. Let's examine how to deal with .X files.

Loading and Rendering .X Files

If you are creating simple geometry in code, arranging the data in optimal ways can be easy, but most
of the time, models are created in a 3D modeling package and saved as geometry in a file. Now that
you know the basics of how to render geometry, let’s look at how you can read data from an .X file and

explore the different ways you can render the geometry.

The .X file format is a relatively robust format for storing 3D information. An increasing number of 3D
modeling applications feature the ability to save files in the .X format, but some do not. If your 3D
modeling program cannot save .X files, or if you have a 3D file in a different format, the SDK includes
utilities, such as conv3ds.exe, to convert file formats. The following discussion assumes that the data is
stored as an .X file. Once you have .X files, the D3DX library comes to the rescue once again and

supplies several interfaces and functions for dealing with meshes.

The easiest way to read mesh data from an .X file is to use D3DXLoadMeshFromX. The following code

shows the function prototype, and Table 10.1 describes the parameters:

Table 10.1: D3DXLoadMeshFromX Parameters

117

Parameter Comments

LPSTR pFileName This is the file name of the .X file. This must include

the path and the file name.

DWORD MeshOptions This parameter can be a combination of the
D3DXMESH_flags, which correspond to the memory
pool and usage options for vertex and index buffers.
The same performance and usage considerations

apply here as they do for other vertex buffers.

LPDIRECT3DDEVICES pDevice This is the device that will host this new resource.

LPD3DXBUFFER *ppAdjacencyInfo This is an array that holds three DWORDs per face.
These DWORDs denote the triangles that share

common edges with each triangle.

LPD3DXBUFFER *ppMaterials This is an array of D3DXMATERIAL structures. These
structures contain color information for each face as
well as the file name of any texture map. In this
chapter’s source code, | use the material structure out
of necessity, and | explain the structure in greater
depth in Chapter11.

PDWORD pNumMaterials This is a pointer to a DWORD that is filled by the
function to specify the number of materials listed in the

preceding structure.

LPD3DXMESH *ppMesh This is the mesh object that contains the geometric

information from the .X file.

HRESULT D3DXLoadMeshFromX (LPSTR pFileName, DWORD MeshOptions,
LPDIRECT3DDEVICES8 pDevice,
LPD3DXBUFFER *ppAdjacencylInfo,
LPD3DXBUFFER *ppMaterials,

PDWORD pNumMaterials, LPD3DXMESH *ppMesh) ;

After the .X file is read, the output is a mesh object. The ID3DXMesh interface has many members that
give the user a finer grain of control over the mesh itself. Some of these functions allow direct access to
the vertex and index buffers for the mesh. Others are used to optimize the mesh. When | begin talking
about vertex shaders, you will need to deconstruct mesh objects to get at the raw data. And | also talk
about some of the member functions of the ID3DxXMesh interface. When | talk about mesh optimization,
| discuss the optimization functions. For now, | concentrate on the basic approaches to rendering the

mesh object once it is loaded with D3DXLoadMeshFromX.

118

When the mesh is loaded, D3DXLoadMeshFromX creates a mesh object and a buffer containing all the
materials used by the mesh object. So far, | have only talked about vertex colors. | talk more about
materials in the chapter on lighting, but the quick explanation is that the device uses materials to define
colors when lighting is enabled. When you get into vertex shaders, you will go back to using vertex
colors because you will be creating your own lights in the vertex shaders. The D3DX functions return
materials stored as an array of D3DXMATERIAL structures. This array contains all the color and texture
information used in the mesh object. Simple meshes can use only one material. Others can specify a
different material for every face. The connection between materials and mesh faces lies in a data
member of the ID3DxMesh object called the attribute buffer. This is an array of DWORDs that specifies
the material for each face. The first value in the buffer corresponds to the array index of the material for
the first face, and so on. Therefore, you can think of each material as defining a subset of faces that use

that material. In most simple rendering code, you draw meshes using DrawSubset:

HRESULT ID3DXMesh::DrawSubset (DWORD AttributelID) ;

Here, the AttributeID parameter corresponds to an index in the array of materials. For instance,
drawing the subset for attribute 0 draws all the faces that use the first material in the array. This leads to
a performance consideration. Unless the mesh has been optimized, the attribute buffer is not
guaranteed to be sorted by attribute. If this is the case, a call to DrawSubset results in a linear search
through the entire attribute buffer for all faces with a given attribute. For a large mesh with n different
materials, this could result in n searches though a large array. You can definitely do better. For this
reason, it is usually a good idea to either optimize the mesh using the built-in optimization functions or at

least be aware of what is actually happening when you call DrawSubset.

Other than the considerations with using materials, ID3DxMesh renders models exactly the same way |
described with indexed triangle lists. The performance considerations | talked about with vertex buffers
and rendering primitives apply to ID3DxMesh as well. The real advantages to using the mesh interface

are .X file access and the optimization functions.

Performance Considerations

I've hinted at several performance considerations throughout this chapter, but it is worthwhile to

reiterate some of them here. First, as always, it's best to keep the number of vertices as low as possible.
This is a matter of not only dealing with optimized 3D assets, but also rendering those assets as
efficiently as possible. As I've shown, the best way to render geometry is with either indexed strips or

indexed lists. Indexed lists might be slightly less efficient, but overall they are easier to work with.

Batching is always something to keep in mind. The issues with meshes and searches through the
attribute buffer are not only a matter of the searches through memory. It is also a good idea to optimize
the mesh to limit the number of times you set materials and textures. | have heard anecdotes about
developers who render their objects differently for even and odd frames to take advantage of device
states that were set on the previous frame. This is probably not an extreme you need to go to, but it

shows the importance of thinking about how you use the vertices and the device.

119

Finally, in this chapter, you've started to use lighting and set different render states such as lighting and
culling. | discuss these features in their own chapter soon, but it is sometimes easy to forget that these
things are enabled, costing resources. If you are not using something like lighting, remember to turn it

off. But first, remember the rule about batching. Do not turn the lighting on and off. Render all lit objects

first with lighting on, and then turn it off for all the objects that do not use lighting.

The Code

In previous chapters, I've shown the source code and explained it as you walk through. Things are now

starting to get complex enough where | should give a high level explanation before you start.

The code for this chapter highlights many of the basic concepts I've discussed. It renders four different

basic geometry types and a mesh object. Figure 10.6 shows a screenshot from the sample application.

Figure 10.6: Rendering geometry and a mesh.

You create the rectangular plane using a triangle list. You create the inner cylinder with a triangle strip
and the top of the cylinder with a triangle fan. You create the outermost cylinder with an indexed triangle
list, reusing the vertices from the triangle trip. You resize the outer cylinder by applying a scaling
transformation. Finally, the dual spheres are loaded from an .X file and rendered below the other objects.
The actual application spins these objects around so that you can see the shape and the effects of

lighting.

Take a look at the code, starting with Geometry@ Application.h. As in the previous chapter, | am only

going to highlight new code for both the header and the implementation file. The complete source code
is on the CD:

#include "Application.h"

One of the first things you might notice is that you move the vertex definition out of the implementation

file and into the header file. This is so you can create member functions that use the structure as a

120

parameter. Also, you remove the color member from the structure. When dealing with lighting and

materials, there’s no reason to specify colors in the vertex format:
struct GEOMETRY VERTEX
{
float x, vy, z;
float nx, ny, nz;
i
class CGeometryApplication : public CHostApplication
{
public:
Lighting and transformation now require you to do a lot more setup on the device itself. Therefore, you

use a new function to reset the device states when the device is reset. This is in addition to the previous

code that recreates the vertex buffers:

void SetupDevice();

The following two functions load and draw the mesh object. They were not included with the other
geometry functions because the mesh is loaded into managed memory. Therefore, it does not need to

be recreated if the device is restored:
void RenderMesh () ;

BOOL LoadMesh () ;

You call the next two functions whenever the device is created or restored. They handle creating the

vertex buffer and the new index buffer, as well as calling the functions that create the actual vertex data:
BOOL CreateGeometry () ;
BOOL FillVertexBuffer ()

void DestroyGeometry () ;

The following functions fill the vertex and index buffers. When the index buffer is initialized, only the
values of the index buffer are filled. The vertices for the indexed primitive are reused values from the

triangle strip:

void InitializeIndexed() ;

void InitializeList (GEOMETRY VERTEX *pVertices);
void InitializeStrip (GEOMETRY VERTEX *pVertices);

void InitializeFan (GEOMETRY VERTEX *pVertices);

121

The next function initializes the DirectX light used in the sample. In the full source code, this line is

followed by the standard functions such as PostReset, Render, and so on:

void InitializelLights();

The following are the interface pointers to the buffer and mesh objects you will be rendering. These

pointers are created by the device methods and the D3DX functions:
LPDIRECT3DVERTEXBUFFER8 m pVertexBuffer;
LPDIRECT3DINDEXBUFFER8 m pIndexBuffer;

LPD3DXMESH m_ pMesh;

You have several material variables shown below. The first material is one you define and apply to the
simple geometry. The material array is a list of materials defined by the mesh. You also keep track of

the number of materials so you can loop through them when you draw subsets of the mesh.
D3DMATERIAL8 m ShapeMaterial;
D3DMATERIAL8 *m pMeshMaterials;

DWORD m NumMaterials;

In the full source code, you also retain the transformation matrices you defined in the last chapter. This

defines the new application class for this chapter. Now, look at Geometry@ pplication.cpp to see how

these new concepts are actually implemented:

#include "GeometryApplication.h"

You redefine your vertex format to exclude color information because you are using materials. Almost
all of the shader techniques include at least one color in the format because you will be implementing

your own lighting, but for now, there is no point in defining vertex colors:

#define D3DFVF GEOMETRYVERTEX (D3DFVF XYZ | D3DFVEF NORMAL)

The following definitions make it easy to experiment with different resolutions for the strips and fans you
use to draw the cylinders. Change the number of sides and see the effects. For explanations of how the
number of vertices relates to the number of sides, see the explanations later in the chapter when | talk

about filling the vertex buffer:

#define NUM LIST VERTICES 6

#define NUM FAN SIDES 10

#define NUM FAN VERTICES NUM FAN SIDES + 2

#define NUM STRIP SIDES 10

#define NUM STRIP VERTICES (2 * NUM STRIP SIDES) + 2
#define FAN OFFSET NUM LIST VERTICES

#define STRIP OFFSET FAN OFFSET + NUM FAN VERTICES

122

#define NUM VERTICES (NUM LIST VERTICES + NUM FAN VERTICES +

NUM_STRIP VERTICES)
As you’ve seen in previous chapters, it is good to initialize the pointers to NULL to ensure that you don't
try to use a pointer for an object that’s not really created. Also, the destructor destroys all buffers:
CGeometryApplication: :CGeometryApplication ()
{

m pVertexBuffer = NULL;

m pIndexBuffer = NULL;

m_pMesh = NULL;

m pMeshMaterials = NULL;

m NumMaterials = 0;
}

CGeometryApplication: :~CGeometryApplication ()

{

DestroyGeometry () ;

After the device is created, the device states are set and the simple geometric shapes are created.
Finally, you load the mesh file. This is the only time you need to load the mesh because the mesh exists

in managed memory. Therefore, it doesn’t need to be recreated if the device is lost:

BOOL CGeometryApplication::PostInitialize ()

{

if (FAILED (EasyCreateWindowed (m hWnd, D3DDEVTYPE HAL,
D3DCREATE_HARDWARE_VERTEXPROCESSING)))
return FALSE;

SetupDevice () ;

if (!CreateGeometry())

return FALSE;

return LoadMesh () ;

123

The following function sets up the device, setting a default view and projection matrix. In the previous
chapter, the projection matrix was set in the render function to account for changes in the window shape.
Here you set it once. You also turn off culling because triangles in strips have alternating winding orders.

Finally, you set up the lights:
void CGeometryApplication::SetupDevice ()
{

D3DXMatrixIdentity (&m ViewMatrix);

m_pD3DDevice->SetTransform(D3DTS VIEW, &m ViewMatrix);

RECT WindowRect;

GetClientRect (m_hWnd, &WindowRect);

D3DXMatrixPerspectiveFovLH (&m ProjectionMatrix, D3DX PI / 4,
(float) (WindowRect.right - WindowRect.left) /
(float) (WindowRect.bottom - WindowRect.top),
1.0f, 100.0f);

m_pD3DDevice->SetTransform(D3DTS PROJECTION, &m ProjectionMatrix);

m_pD3DDevice->SetRenderState (D3DRS_CULLMODE, D3DCULL_NONE) ;

InitializeLights();

The PostReset function now not only recreates geometry, but also resets the device states by calling
SetupDevice. This is because the reset device does not retain the device states from the previously

created device:

BOOL CGeometryApplication::PreReset ()

{
DestroyGeometry () ;

return TRUE;

BOOL CGeometryApplication::PostReset ()

{

SetupDevice () ;

124

return CreateGeometry() ;

Now, in addition to cleaning up your vertex buffers, you must also clean up the mesh object and the

array of materials:

BOOL CGeometryApplication::PreTerminate ()

{

DestroyGeometry () ;

if (m_pMesh)

m_pMesh->Release();

m_pMesh = NULL;

if (m_pMeshMaterials)

delete m pMeshMaterials;

m pMeshMaterials = NULL;

return TRUE;

Here you create the vertex buffer as you have in previous chapters, but you also create an index buffer
for your indexed primitives. You create and initialize the material that will be used for your geometry

before you fill the vertex buffer:
BOOL CGeometryApplication::CreateGeometry ()
{
if (FAILED (m_pD3DDevice->CreateVertexBuffer (
NUM VERTICES * sizeof (GEOMETRY VERTEX),
D3DUSAGE WRITEONLY, D3DFVF GEOMETRYVERTEX,
D3DPOOL DEFAULT, &m pVertexBuffer)))

return FALSE;

125

if (FAILED (m_pD3DDevice->CreateIndexBuffer (
sizeof (short) * NUM STRIP SIDES * 2 * 3,
D3DUSAGE WRITEONLY, D3DFMT INDEX16,
D3DPOOL DEFAULT, &m pIndexBuffer)))

return FALSE;

ZeroMemory (&m ShapeMaterial, sizeof (D3DMATERIALS));

m ShapeMaterial.Diffuse.r = m_ ShapeMaterial.Ambient.r = 1.0f;

Il
—

m_ShapeMaterial.Diffuse.g m_ShapeMaterial.Ambient.g .0f;

Il
—

m_ShapeMaterial.Diffuse.b m_ShapeMaterial.Ambient.b .0f;

m ShapeMaterial.Diffuse.a = m_ ShapeMaterial.Ambient.a = 1.0f;

FillVertexBuffer();

return TRUE;

First, you load the mesh itself. In this chapter, you don’t care about the adjacency information because

you are not going to use it for anything. You create a mesh and an array of materials.
BOOL CGeometryApplication: :LoadMesh ()

{

LPD3DXBUFFER pD3DXMtrlBuffer;

if (FAILED (D3DXLoadMeshFromX ("..\\media\\TwoSpheres.x", D3DXMESH MANAGED,
m_pD3DDevice, NULL, &pD3DXMtrlBuffer,
&m_NumMaterials, &m pMesh)))
return FALSE;
The following code repackages the array into an array of simple materials. The materials are stored in a

generic D3DXBUFFER, but the data stored in the array is in the form of a D3DXMATERIAL array. Here,

you recast the array so that you can use it more easily:
D3DXMATERIAL* d3dxMaterials =

(D3DXMATERIAL*) pD3DXMtrlBuffer->GetBufferPointer();

126

You allocate an array of materials that will be used when you render each subset of the mesh:

m pMeshMaterials = new D3DMATERIALS[m NumMaterials];

You loop through each material and copy it to your own array. You also set the ambient color to the
diffuse color. In most realistic cases, the ambient color should be the same as the diffuse color, but in

some circumstances, you might want different colors:

for (long MatCount = 0; MatCount < m NumMaterials; MatCount++)

{
m pMeshMaterials[MatCount] = d3dxMaterials[MatCount].MatD3D;
m pMeshMaterials[MatCount] .Ambient =

m _pMeshMaterials[MatCount] .Diffuse;

pD3DXMtrlBuffer->Release() ;

return TRUE;

In previous chapters, you’ve made sure to release the vertex buffer. Now you must do the same for the

index buffer:

void CGeometryApplication::DestroyGeometry ()

{

if (m_pVertexBuffer)

m_pVertexBuffer->Release();

m pVertexBuffer = NULL;

if (m_pIndexBuffer)

m_pIndexBuffer->Release();

m_pIndexBuffer = NULL;

127

Before you render the mesh, you set a transform matrix to push the mesh down and away from the

camera, which is at the origin. You also spin the mesh so that you can see many different views. For

this example, the exact transformation is not important; you can experiment with different values to see

the object from different viewpoints:

void CGeometryApplication: :Render ()

{

D3DXMATRIX Translation;
D3DXMATRIX Rotation;

D3DXMATRIX Scaling;

D3DXMatrixRotationYawPitchRoll (&Rotation,
(float)GetTickCount () / 100.0f,
0.0, 0.0f);

D3DXMatrixTranslation (&Translation, 0.0f,

m WorldMatrix = Rotation * Translation;

-1.0£, 5.0f);

m_pD3DDevice->SetTransform(D3DTS WORLD, &m WorldMatrix);

RenderMesh () ;

Here, you set up everything you need to render your own geometry. In previous chapters, you were able

to set these once in the initialization functions. Now, you must reset them each time because the mesh

object has set the vertex buffer and so on for its own diabolic purposes. Note that the index buffer uses

STRIP OFFSET as an offset that is added to each index. This is not the typical usage, but you are using

it here so that it becomes almost trivial to set up your index buffer:

m_pD3DDevice->SetVertexShader (D3DFVF GEOMETRYVERTEX) ;

m_pD3DDevice->SetStreamSource (0, m pVertexBuffer,

sizeof (GEOMETRY VERTEX)) ;

m pD3DDevice->SetIndices (m pIndexBuffer,

STRIP_OFFSET) ;

m_pD3DDevice->SetMaterial (&m ShapeMaterial) ;

Again, you set a transform that will apply to all of your geometry. This transform will push it away from

the origin, tip it away from the viewer for a more dramatic view, and rotate the object:

D3DXMatrixRotationYawPitchRoll (&Rotation,

128

(float)GetTickCount () / 1000.0f,

D3DX PI / 8.0f, 0.0f);
D3DXMatrixTranslation (&Translation, 0.0f, 0.0f, 5.0f);
m WorldMatrix = Rotation * Translation;

m_pD3DDevice->SetTransform(D3DTS _WORLD, &m WorldMatrix) ;

The following code draws the three basic primitives: a rectangle made from two triangles, a triangle fan
for the top of a cylinder, and a triangle strip for the sides of the cylinder. Note that the number of sides

for the cylinder is doubled because each side is made from two triangles:

m pD3DDevice->DrawPrimitive (D3DPT TRIANGLELIST, 0, 2);

m _pD3DDevice->DrawPrimitive (D3DPT TRIANGLEFAN, FAN OFFSET,

NUM_FAN SIDES);

m pD3DDevice->DrawPrimitive (D3DPT TRIANGLESTRIP, STRIP OFFSET,

NUM STRIP SIDES * 2);

The outer cylinder is built from an indexed triangle list that indexes into the vertices set by the triangle
strip. The data itself is the same for both cylinders, but before you draw the outer cylinder, you add a
scaling factor to the world transform, which affects the data and makes the outer cylinder shorter and

wider:
D3DXMatrixScaling (&Scaling, 1.5f, 0.5f, 1.5f);
m WorldMatrix = Scaling * m WorldMatrix;
m_pD3DDevice->SetTransform(D3DTS _WORLD, &m WorldMatrix) ;
m_pD3DDevice->DrawIndexedPrimitive (D3DPT TRIANGLELIST,
0, NUM VERTICES,

0, NUM STRIP SIDES * 2);

The code to render the mesh is simple. You loop through all materials, set the material, and then draw
the subset related to that material. Note that the vertex data doesn’t contain any color information. You
could easily change the rendering of an .X file by using your own materials. For instance, instead of
setting the material based on the material array, change the material to the one you created for your

own geometry:

void CGeometryApplication::RenderMesh ()

{

129

for (DWORD MatCount = 0; MatCount < m NumMaterials; MatCount++)

m_pD3DDevice->SetMaterial (&m pMeshMaterials[MatCount]) ;

m_pMesh->DrawSubset (MatCount) ;

The following function is essentially the same as in previous samples. However, this code breaks the

vertex creation into several sections for easier explanation. Note that the index buffer function doesn’t

need access to the vertices themselves:

BOOL CGeometryApplication::FillVertexBuffer ()
{
if (!m pVertexBuffer)

return FALSE;

GEOMETRY_VERTEX *pVertices;
if (FAILED (m pVertexBuffer->Lock (0,
NUM_VERTICES * Sizeof(GEOMETRY_VERTEX),

(BYTE **)é&pVertices, D3DLOCK DISCARD)))

DestroyGeometry () ;

return FALSE;

Initializelist (pVertices);
InitializeFan (pVertices);
InitializeStrip(pVertices);
InitializeIndexed() ;

m_pVertexBuffer->Unlock();

return TRUE;

130

This function creates the vertices for the fan. The rationale for the code appears in Figure 10.7.

Anghe calculations
ropoaied for each
vl

Thaed fan
Tl

05 snjAnga)

First fan A Second fan ~
e 0.5 * cos|Anghe) i

Figure 10.7: The layout of the triangle fan.

The following function first sets the center vertex and then draws each outer vertex. The last vertex is
rendered separately so that rounding errors do not produce an incomplete circle. You set the last values
explicitly so that the edges match up. The number of vertices used is two more than the number of sides
because it takes three vertices to draw the first triangle and only one vertex to draw each subsequent

triangle. Each vertex has a normal vector pointing straight up in the Y direction:
void CGeometryApplication::InitializeFan (GEOMETRY VERTEX *pVertices)
{

pVertices[FAN OFFSET].x

pVertices[FAN OFFSET].z = 0.0f;

pVertices[FAN OFFSET].y

1.0£;

pVertices[FAN OFFSET].nx = pVertices[FAN OFFSET].nz = 0.0f;

pVertices[FAN OFFSET].ny 1.0f;

for (long FanIndex = 0; FanIndex < NUM FAN VERTICES - 2;

FanIndex++)

float Angle = (float) (FanIndex) * (2.0f * D3DX PI) /

(float) (NUM_FAN VERTICES - 2);

pVertices[FAN OFFSET + FanIndex + 1].x = 0.5f * cos(Angle);

pVertices[FAN OFFSET + FanIndex + 1].z 0.5f * sin(Angle);

131

pVertices[FAN OFFSET + FanIndex + 1].y = 1.0f;

pVertices[FAN OFFSET + FanIndex + 1].nx =
pVertices[FAN OFFSET + FanIndex + 1].nz = 0.0f;

pVertices[FAN OFFSET + FanIndex + 1].ny = 1.0f;

pVertices[FAN OFFSET + NUM FAN VERTICES - 1].x = 0.5f;

pVertices[FAN OFFSET + NUM FAN VERTICES - 1].z = 0.0f;

pVertices[FAN OFFSET + NUM FAN VERTICES - 1].y = 1.0f;

pVertices[FAN OFFSET + NUM FAN VERTICES - 1].nx =

pVertices[FAN OFFSET + NUM FAN VERTICES - 1].nz = 0.0f;

pVertices[FAN OFFSET + NUM FAN VERTICES - 1].ny = 1.0f;

This code demonstrates how a triangle strip is created. Figure 10.8 shows a section of the side of the

cylinder, with vertices alternating between the top and bottom of the cylinder.

mrins rorTay
iy banagd o Tha narme R/
suhy o are Lo b g e
varlar peqdaes

Figure 10.8: The layout of the triangle strip.

The total number of vertices used is two times the number of sides plus two. This equation is used
because each rectangular side requires two triangles. Also, the reason for adding two is the same as for
the fan. The first triangle requires three vertices and every other one requires one vertex. The normals
for each side point in the same direction as the vector you used to define the vertex position. Using

unscaled sine and cosine values produces a normalized normal vector:

132

void CGeometryApplication::InitializeStrip (GEOMETRY VERTEX *pVertices)

{

for (long StripIndex = 0; StripIndex < NUM STRIP VERTICES;

StripIndex += 2)

float Angle = (float) (StripIndex) * (2.0f * D3DX PI) /

(float) (NUM_STRIP _SIDES * 2);

pVertices[STRIP OFFSET + StripIndex].x =

pVertices[STRIP OFFSET + StripIndex + 1].x 0.5f * cos(Angle);
pVertices[STRIP OFFSET + StripIndex].z =

pVertices[STRIP OFFSET + StripIndex + 1].z = 0.5f * sin(Angle);

pVertices[STRIP OFFSET + StripIndex].y = 0.0f;

pVertices[STRIP OFFSET + StripIndex + 1].y = 1.0f;

pVertices[STRIP OFFSET + StripIndex].nx =
pVertices[STRIP OFFSET + StripIndex + 1].nx = cos(Angle);

pVertices[STRIP OFFSET + StripIndex].nz =

pVertices[STRIP OFFSET + StripIndex + 1].nz sin (Angle) ;
pVertices[STRIP OFFSET + StripIndex].ny =

pVertices[STRIP OFFSET + StripIndex + 1].ny = 0.0f;

Even this simple function shows how much redundancy occurs in triangle lists. Here you are setting up

only two triangles, and much of the vertex information is redundant:

void CGeometryApplication::InitializeList (GEOMETRY VERTEX *pVertices)

{

pVertices[0].x = -1.0f;
pVertices[0].z = -1.0f;
pVertices[l].x = pVertices[3].x = -1.0f;

133

pVertices[1l].z pVertices[3].z = 1.0f;
pVertices[2].x pVertices[4].x = 1.0f;
pVertices[2] .z pVertices[4].z = -1.0f;
pVertices[5].x 1.0f;

pVertices[5].z 1.0f;

pVertices[0].y pVertices[l].y =
pVertices[2].y pVertices[3].y =
pVertices[4].y pVertices[5].y = 0.0f;
pVertices[0] .nx = pVertices[l].nx =
pVertices[2] .nx = pVertices[3].nx =
pVertices[4] .nx = pVertices[5].nx = 0.0f;
pVertices[0] .ny = pVertices[l].ny =
pVertices[2] .ny = pVertices[3].ny =
pVertices[4].ny = pVertices[5].ny = 1.0f;
pVertices[0] .nz = pVertices[l].nz =
pVertices[2] .nz = pVertices[3].nz =
pVertices[4].nz = pVertices[5].nz = 0.0f;

In this code, you create an index buffer for an indexed triangle list. The number of indices used is equal
to the number of sides times two triangles per side, times three vertices per triangle. Using a triangle list
can bloat the number of indices, but you are not using more actual vertices than you were with the strip.
Because the vertices are the entities that actually get processed in the pipeline, increasing the number
of indices isn’t too bad. It does use memory, but the amount of space used is small compared to the
vertices themselves. Because you are reusing the strip data, creating the indices is pretty simple. For
other models, the indices might not be this orderly. Notice that you can start your indices at zero
because you used an offset in the call to SetIndices earlier. Alternatively, you could have added
STRIP OFFSET to each index here and used zero as the offset for Set Indices. | wanted to show the

atypical way here, although in most cases, you might want to do it the other way:

void CGeometryApplication::InitializeIndexed ()

134

short *pIndices;
m _pIndexBuffer->Lock (0, sizeof(short) * NUM STRIP SIDES * 2 * 3,

(BYTE **)&pIndices, D3DLOCK DISCARD) ;

for (short Triangle = 0; Triangle < NUM STRIP SIDES * 2;

Triangle++)

pIndices|[(Triangle * 3) + 0] = Triangle;

pIndices|[(Triangle * 3) + 1] Triangle + 1;

pIndices|[(Triangle * 3) + 2] = Triangle + 2;

m pIndexBuffer->Unlock();

Here you initialize a light so that you can see the shaded sides of the geometry. | go into more depth
about lighting in the next chapter. For now, the code creates a directional white light shining straight
down. It then sets this new light and enables the light. Finally, you make sure lighting is enabled and tell

the device to use a small amount of ambient light.
void CGeometryApplication::InitializeLights()
{
D3DLIGHT8 Light;
ZeroMemory (&Light, sizeof (D3DLIGHTS))
Light.Type = D3DLIGHT DIRECTIONAL;

Light.Diffuse.r = Light.Diffuse.g = Light.Diffuse.b = 1.0f;

Light.Direction D3DXVECTOR3 (0.0f, -1.0f, 0.0f);

Light.Range = 100.0f;

m _pD3DDevice->SetLight (0, &Light);

m_pD3DDevice->LightEnable (0, TRUE) ;

m_pD3DDevice->SetRenderState (D3DRS_LIGHTING, TRUE);

135

m_pD3DDevice->SetRenderState (D3DRS_AMBIENT, 0x00101010);

}
In Conclusion...

It's been a long trip, but you finally have real 3D graphics. By now, you have transformed and lit
geometry, and | can begin to talk about doing interesting things with it. The final chapters of this part
complete the basics, talking about lighting, textures, and more device states. After that, you will begin to
change your geometry with vertex shaders. But | am getting ahead of myself again. For now, you know
the drill: Let’s review what you have learned:
] This part has concentrated on moving from vertices to geometry. The geometry I've talked about
has been triangles, but everything I've talked about here also applies to lines.
= Vertex normals define how a surface is lit. In most cases, the vertex normal should be the average
of all of the surface normals of the surfaces defined with that vertex. When you use smooth shading,
the color of every point on the shape is interpolated from the colors and shading of the three
vertices.
" The number-one performance consideration (for raw geometry) is the minimization of the number
of vertices that are processed.
= Degenerate triangles might lie around the house and drink the last can of soda, but they can also
be useful when drawing certain types of geometry.
= Indexed primitives usually make the best reuse of vertices. Indexed triangle lists are arguably the
best performance/convenience tradeoff.
= The I1D3DXMesh interface and associated D3DX functions provide a simple way to access and
manipulate data stored in .X files.
= This is neither the first nor the last time I'll say this, but you should always look for opportunities to

batch things such as vertex buffers, materials, and device states.

Chapter 11: Fixed Function Lighting

® Download CD Content

Overview

Because this book concentrates on shaders, you will concentrate on writing shaders that produce
lighting effects, and you will almost never use the lighting functions of DirectX Graphics. However, it
makes sense to spend a little time going over the fixed function lights. The purpose of this chapter is not
really to discuss fixed function lights in great detail, but rather to give new users a basis of comparison
for the lighting you will implement with vertex and pixel shaders. With that in mind, | go over DirectX
lighting very quickly. If you are an experienced DirectX user, most of this is review. If you are a new user,
this chapter introduces you to the concepts you need to get started. In either case, please understand
that shaders can be more flexible and useful. The following concepts are only for review.

" Using the D3DLIGHTS structure.

136

. Creating directional lights with D3DLIGHTS.

. Creating point lights with D3DLIGHTS.

. Creating spot lights with D3DLIGHTS8.

. Setting up lighting on the D3D device.

= Building lighting into an application.

. Understanding the effect of lighting of meshes of different resolutions.

The D3DLIGHTS8 Structure

| introduced the D3DLIGHTS structure in Chapter 4 as the way that DirectX defines lights. In Chapter 4,

spent time talking about how the final color of a vertex is affected by different lighting types, but | didn’t
really talk about how the lights themselves work. The equations from Chapter 4 assume an intensity of
light at a given point, but | didn’t talk about how that intensity changes. Now you will revisit lighting from
the perspective of the lights and see how the intensity of light hitting a given vertex can be a function of
distance and angle. Remember that a light’s intensity and color are the same, and | sometimes use the

two terms interchangeably.

In this chapter, you'll create some lights using this structure and create some very simple lighting effects.
In later chapters involving shaders, you can still use this structure to store the properties of your lights
whenever it makes sense to. You'll do that for two reasons. First, using the D3DLIGHTS structure makes
it easier for experienced programmers to make the transition from the standard lights to lighting in
shaders. Secondly, it makes it easy for you to toggle from fixed function lights to shader lights if you
choose to compare the effects of each. So even though | don’t spend very much time talking about

DirectX lighting, you might continue to use the DirectX structure for lights.

In the code for the previous chapter, you implemented lights so that the geometry would be shaded and

easier to see. Creating the light itself was straightforward:

D3DLIGHTS8 light;

ZeroMemory (&light, sizeof (D3DLIGHTS)) ;

This snippet of code creates a light structure and then sets all the values to zero. Setting all the values
to zero ensures there is no garbage data in the structure that might adversely affect your lighting. After
the structure is created, you can set each member to the values you need. If you do not need certain
values for certain light types (such as attenuation with directional lights), those values can remain zero.
In the code for this chapter, you'll set values for several different light types. Some of this is a review of
material from Chapter 4, but let's go over the way that each light type uses members of the D3DLIGHTS

structure.

Directional Lights

Directional lights are extremely simple to set up because they use the fewest number of factors in the
lighting computations. To create a directional light, set the light type to directional, zero out the structure

as shown earlier, and set the direction and the color:

137

ZeroMemory (&light, sizeof (D3DLIGHTS))
light.Type = D3DLIGHT DIRECTIONAL;

light.Diffuse.r = light.Diffuse.g = light.Diffuse.b = 1.0f;

light.Direction D3DXVECTOR3 (0.0f, -1.0f, 0.0f);

In this case, the light is white and points straight down, like sunlight that is directly overhead. Notice that
there is no position for the light. You can think of a directional light as coming from an infinitely far
distance and striking every point in space. It also has no attenuation or range, so all points are hit with
the same intensity. This, of course, is unrealistic, but it makes the math computationally inexpensive. In

the context of Chapter 4, the light intensity for any given vertex is simply the diffuse color of the light.

Point Lights

Directional lights have a direction and no position. Point lights are the opposite. They have a position,
but light emanates in all directions. So far, | have conceptualized directional lights as sunlight. Point
lights can be conceptualized as torches or flares where a light source is casting an orb of light onto

surrounding objects. Here is an example of how to set up a point light:

ZeroMemory (&light, sizeof (D3DLIGHTS)) ;

light.Type = D3DLIGHT POINT;

light.Diffuse.r = light.Diffuse.g = light.Diffuse.b = 1.0f;
light.Position = D3DXVECTOR3 (0.0f, 1.0f, 0.0f);
light.Range = 5.0f;

light.Attenuation0 = 0.0f;

light.Attenuationl = 1.0f;

Now, the light is still white but is positioned one unit above the origin and shining in all directions. There
is a maximum range for this light, and it does not light many objects beyond this range. It also

attenuates (changes in intensity) over that range. As discussed, the equation for attenuation is

.
D?

Figure 11.1 shows how different attenuation parameters shape the intensity curve over the range of the
light. Note that point lights become more computationally expensive as you add the Attenuationl

and Attenuation?2 terms.

138

Ty

Rects T i T B ¥ e
£ ST PR T E T
By ol O B R

Adertusion] = 30

MR T T) Coamecs B0 T

Figure 11.1: Examples of attenuation.

Point lights are more realistic than directional lights in that they more accurately model some real forms
of lights, but they do come at a cost. For point lights, the light intensity at any given point is a function of
its distance from that point. So if you were writing your own lighting calculations (as you will with
shaders), you would first calculate the intensity using the attenuation equation and then use that
intensity in your diffuse and specular lighting calculations. The angle for those calculations is the angle

of the vector between the vertex position and the point light position.

Spot Lights

You are probably familiar with spot lights if you are either a movie star or an escaped convict. If the
point light is a torch, then you can consider the spot light a search light. Like point lights, spot lights
have a maximum range, and they attenuate over distance. Unlike point lights, spot lights shine in a
specific direction, and the rays of light form a cone with two distinct regions. The umbra, or inner part of
the cone, contains light that attenuates over distance but not over the radius of the umbra. The phi
member of the light structure defines this inner region. The penumbra, or outer part of the cone, is the
region where light attenuates not only over distance, but also over the radius. The Theta member of
the structure defines the angle of the penumbra, and Falloff represents the change in intensity.

Figure 11.2 shows the spot light cone.

139

Phi

mbra

Penumbra

Figure 11.2: Spot light cone.

Combining the Attenuation and Falloff parameters for spot lights yields the following equation:

L = Atsrniabon Term * Falloff Term * LightColoy

Falloff =
1.0 where the pomt 5 withm the ambra

0.0 where the pomnt = catade the pembmbes

Faayf
coplmglel - Lu:;.‘i:n

#.

= Where the pownt 12 wnthin the penambes
CoE—h=coEz]

Figure 11.3 shows the effect of different Falloff values. Note that there is a performance cost
associated with Fallof f values other than 1. Although other values might create a better appearance,

a value of 1 is often good enough.

140

4 Light intensity

Falloff = 0.5

1.0

Falloff =50
: =

Distance from the Eght

Light
range

Figure 11.3: Fallorf values and their curves.
Having said all that, the following code creates a spot light:

ZeroMemory (&light, sizeof (D3DLIGHTS))

light.Type = D3DLIGHT SPOT;

light.Diffuse.r light.Diffuse.g = light.Diffuse.b = 1.0f;

light.Direction = D3DXVECTOR3(0.0f, -1.0f, 0.0f);

light.Position D3DXVECTOR3 (0.0f, 5.0f, 0.0f);

light.Theta = D3DX_PI / 4.0f;
light.Phi = D3DX PI / 2.0f;
light.Falloff = 5.0f;
light.Range = 10.0f;

This code creates a spot light that is five units above the origin and shines straight down. The other

parameters shape the cone and the falloff between the umbra and the penumbra.

As you can see from all of the equations and parameters, a lot of computation goes into calculating the
spot light intensity at any given vertex. Once the intensity is calculated, you must still enter that value
into all the actual lighting calculations.

Setting Up the Device for Lighting

So far I've discussed the lights, but you must set up the device to actually use the lights. Devices have a
maximum number of lights they can manage at any given time. You can find the number of lights

available by asking the device:

D3DCAPS8 Caps;

141

m_pD3DDevice->GetDeviceCaps (&Caps) ;

DWORD NumLights = Caps.MaxActivelLights;

When you're setting and using lights, do not exceed this number of lights. When | start talking about
vertex shaders, | show how to use an arbitrary number of lights. Once you ensure that lights are

available, you must enable lighting by setting the device state:

m_pD3DDevice->SetRenderState (D3DRS_LIGHTING, TRUE);

You can also set the device to use a global ambient lighting value. Setting this value does not consume

one of the available lights:

m_pD3DDevice->SetRenderState (D3DRS_AMBIENT, 0x00101010);

Setting some low ambient value is usually preferable because it simulates the real effect of stray rays of

light bouncing around the environment and illuminating surfaces that the actual lights might never hit.

The next step is to tell the device which lights you actually want to enable. This can be useful if you

want to use some lights for some objects and not for others. For instance, if you have several spot lights,
but you have geometry that you know is well outside the range of those lights, you could disable the
spot lights when drawing the geometry and then enable the spot lights when drawing the geometry you
know is within range. This can help you optimize performance. The following code shows how to enable
specific lights. The first parameter is the identifier of the light, and the value should not exceed the

number of available lights minus one:

m_pD3DDevice->LightEnable (0, TRUE);

The last step is to actually set each light. Once a D3DLIGHTS structure is populated, you can pass it to

the device:

m_pD3DDevice->SetLight (0, &light);

Note that this structure sets the parameters for a given light, but the device does not monitor that
structure for changes. For instance, if you change the position of the light by changing the structure, you

must call SetLight again to inform the device of the changes.

After these steps are complete, the device lights vertices using the parameters you set and the
equations from this chapter and Chapter 4. If the hardware supports hardware T&L, the computation

happens on the graphics hardware; otherwise, it happens on the CPU.

The Application

The sample application is a very basic framework for experimenting with the effects of different lights.
The application implements all three lights, but the spot and point lights are the most interesting. To
demonstrate the effects of lighting, the application loads a single mesh file that contains five different

subsets of different materials. Each subset is a simple plane, but they have different numbers of vertices.

142

Figure 11.4 shows the effect of the point light on four of the subsets.

Sl i sashidal Tirird rainal s

Fosurth mrash subset Fifin mesh subset

Figure 11.4: Point lights on meshes.

The simple sphere shows position and range of the point light. Vertices that fall inside the range of the
sphere are lit according to the parameters of the light. Vertices that fall outside the range of the light are
not lit, but the device interpolates the colors of vertices over each triangle. This demonstrates the

tension between creating efficient meshes with a limited number of vertices and creating meshes with
nice smooth lighting.

Figure 11.5 shows the same set of meshes lit with a spot light.

Sl ik dashial Tirird rainal s

Foourth mrash subset Fifin mesh subset

Figure 11.5: Spot lights on meshes.

Simple lines and circles help to visualize the umbra and penumbra. As with the point light, only vertices
that fall within the penumbra are actually lit. One of the things to note here is that spot lights are

probably not worth the expense if you are lighting small, low-resolution meshes.

143

Note that there is a subset that is not shown in the figures above. It is a very low-resolution mesh with
vertices only on the four corners of the plane. If all four vertices are outside the range of a light, the
whole plane is unlit. This is not an error; it's just the way per vertex lighting works. In later chapters, |

talk about per pixel lighting, which you can use to produce better results for low-resolution meshes.

This application is a simple demonstration. The user interface consists of two keys. Press F1 to cycle
through the different resolution meshes, and press F2 to cycle through the different light types. | also
recommend that you experiment with the different parameters and animate the lights to see the effects.
The following code demonstrates all the basic pieces. Feel free to change them to explore the ways that
the lights work. To keep things as simple as possible, the light visualization code does not include the
ability to rotate the graphical representations of the lights, but changing the light direction in the
D3DLIGHTS structure changes the direction of the light. Finally, if you like, you can load a different
mesh, but remember that the application code renders only one subset at a time. If you want, change
the mesh rendering code to render differently. In any case, make sure you understand the code before

you make any changes; otherwise, you might get some confusing results.

The Code

Continuing the trend from the previous chapters, you will be subclassing the framework application
class with your new lighting code. These files appear on the CD in the \Code\Chapter11 directory. Take

a look at the new Lighting@ pplication.h:

#include "Application.h"

class CLightingApplication : public CHostApplication
{
public:
CLightingApplication();
virtual ~CLightingApplication();
These three functions handle the creation, rendering, and destruction of the vertex buffer you use to

draw the visualizations of the lights. These lights are set up as line strips, and they behave the same

way as the vertex buffers you've used in previous chapters:
void RenderLightVisuals();
void DestroyLightVisuals();

BOOL InitializelLightVisuals();

These functions make sure that the device is set to use lighting and that all the lights are actually
initialized. SetupDevice is a separate function so you can set up the device after a reset. If you want

to change the lighting parameters, change the code in ITnitializelLights:

void SetupDevice();

144

void InitializeLights();

This function loads the mesh file. This particular application assumes that the mesh object contains

several subsets of varying resolutions:

BOOL LoadMesh () ;

These are the standard overridden functions you use to build in your own functionality. For this
application, take a close look at HandleMessage to see how you handle the keyboard input that

changes the lights and mesh subsets:
virtual BOOL PostInitialize();
virtual BOOL PreTerminate();
virtual BOOL PreReset();
virtual BOOL PostReset();
virtual void Render () ;

virtual BOOL HandleMessage (MSG *pMessage) ;

These are your mesh variables. Usually, you would load a mesh and then render all of the subsets on
every frame. For this application, you load all the subsets but render only one of them per frame. The

subset specified by m_CurrentSubset is the only one drawn each frame:
LPD3DXMESH m_pMesh;
D3DMATERIAL8 *m pMeshMaterials;
DWORD m NumMaterials;

DWORD m_ CurrentSubset;

Similar to the mesh variables, the light variables create three different light structures, and the
m_CurrentLight member determines which light is used in a given frame. You can manipulate these

light structures to change the lighting parameters:
D3DLIGHT8 m Light[3];

DWORD m_CurrentLight;

This vertex buffer stores the vertices used in your light visualizations for the point light and spot light. All

of the line strips are stored in this one buffer:
LPDIRECT3DVERTEXBUFFER8 m pLightsBuffer;
D3DXMATRIX m WorldMatrix;
D3DXMATRIX m ViewMatrix;

D3DXMATRIX m ProjectionMatrix;

145

As you can see, your new lighting class is fairly simple. You have a mesh object, a set of lights, and a
set of functions that handle drawing the cones and spheres of lights to give you a better indication of

what is actually going on. Take a look at Lighting@ pplication.cpp to see how this all comes together:

#include "LightingApplication.h"

These definitions index into your array of lighting structures. If you choose to add more lights to this
sample application, make sure you make changes here so that the application can properly loop

through the lights:

#define SPOT LIGHT 0
#define DIR LIGHT 1
#define POINT LIGHT 2
#define MAX LIGHT 2

Here you define the numbers of vertices that are used to draw the lights themselves. The cone points
represent two edges of the cone with three points each. There is no real point to changing this number
unless you change the rendering code to draw a more complex cone. You can set the number of circle
points to draw a higher- or lower-resolution circle. Higher values create smoother circles. | arbitrarily
picked a value that produced a decent circle. Note that in Chapter 8 you drew a circle with many
vertices, and | mentioned that really wasn'’t the proper way to draw a circle. Here you do it the right way.
If you are planning to draw circles or curves, use this chapter as an example. | talk about this more

when you actually set up and render the vertex buffer:
#define NUM CIRCLE POINTS 40
#define NUM CONE POINTS 6

#define NUM VERTICES (NUM CIRCLE POINTS + NUM CONE POINTS)

This is your very simple vertex structure and format. Because you are only using this for simple lines,

you don’t need vertex normals or any other additional data:
struct VISUALS VERTEX
{
float x, vy, z;
DWORD diffuse;
i

#define D3DFVF VISUALSVERTEX (D3DFVF XYZ | D3DFVF DIFFUSE)

As usual, you need to be sure that all of your counters and pointers are set to something valid.
Sometimes it's easy to forget this, but if these variables are set to invalid numbers and you try to render

a nonexistent subset, that’s bad:

CLightingApplication::CLightingApplication ()

146

m_pMesh = NULL;

m pMeshMaterials = NULL;

m NumMaterials = O;
m_CurrentSubset = 0;
m_CurrentLight = 0;
m pLightsBuffer = NULL;

}

CLightingApplication::~CLightingApplication ()

{

}

This code is basically the same as what you’ve seen in previous chapters. The only difference is that

you make sure to get the device properly set up, and you make sure that the light visuals and mesh are

created:
BOOL CLightingApplication::PostInitialize ()
{
if (FAILED (EasyCreateWindowed (m hWnd, D3DDEVTYPE HAL,
D3DCREATE HARDWARE VERTEXPROCESSING)))

return FALSE;

SetupDevice () ;

if (!InitializeLightVisuals())

return FALSE;

return LoadMesh() ;

}
void CLightingApplication::SetupDevice ()

{

Earlier | promised that | would slowly sneak D3DX functions into the code of various chapters. This is
the first time you’ve used D3DXMatrixLookAtLH. In this case, you are setting up a view matrix where

the camera is placed up and back but looking down at the origin. The final parameter is the "up vector,"

147

which in this case is set to straight up. This might seem pretty obvious, but in some cases you might

want to use other vectors for the up vector:
D3DXMatrixLookAtLH (&m ViewMatrix,
&D3DXVECTOR3 (0.0f, 20.0f, -20.0f),
&D3DXVECTOR3 (0.0f, 0.0f, 0.0f),
&D3DXVECTOR3 (0.0f, 1.0f, 0.0f));

m_pD3DDevice->SetTransform(D3DTS VIEW, &m ViewMatrix);

You also make sure to set the world matrix to the identity matrix and set up a projection matrix. If you
want to change these settings and animate the world or the camera, you can move most of this
functionality to the Render function. For many of these samples, I'm trying to keep everything simple,
but please experiment. Even if you totally change the code, you can always get the original from the
CD:

D3DXMatrixIdentity (&m WorldMatrix);

m_pD3DDevice->SetTransform(D3DTS _WORLD, &m WorldMatrix) ;

RECT WindowRect;
GetClientRect (m_hWnd, &WindowRect);
D3DXMatrixPerspectiveFovLH (&m ProjectionMatrix,
D3DX PI / 8,
(float) (WindowRect.right - WindowRect.left) /
(float) (WindowRect.bottom - WindowRect.top),
1.0f, 500.0f);
m_pD3DDevice->SetTransform(D3DTS PROJECTION,

&m_ProjectionMatrix);

Here is a snippet of code that checks the number of lights. In this sample, you don’t really use that value
because you are only using one light, but for more complex applications, you might want to check this

value:
D3DCAPS8 Caps;
m_pD3DDevice->GetDeviceCaps (&Caps) ;

DWORD NumLights = Caps.MaxActivelLights;

In this last set of calls, you enable lighting, enable the first light itself, and set a small amount of ambient

light in the scene before calling the function that actually sets up the light structures:

m_pD3DDevice->SetRenderState (D3DRS_LIGHTING, TRUE);

148

m_pD3DDevice->LightEnable (0, TRUE);

m_pD3DDevice->SetRenderState (D3DRS_AMBIENT, 0x00101010);

InitializeLights();

As in the previous chapter, your mesh object lives in managed memory. Therefore, when the device is

reset, you only need to worry about your homemade vertex buffer. The device takes care of the mesh

object:
BOOL CLightingApplication: :PreReset ()
{

DestroyLightVisuals () ;

return TRUE;

Once the device is reset, make sure that all the device states are set, and then

re-create the vertex buffer and the data:

BOOL CLightingApplication::PostReset ()

{
SetupDevice () ;

return InitializeLightVisuals();

This is the same thing you've seen in the last few chapters. As always, clean up after yourself:

BOOL CLightingApplication::PreTerminate ()

{

DestroyLightVisuals () ;

if (m_pMesh)

m_pMesh->Release();

m pMesh = NULL;

}

if (m_pMeshMaterials)

delete m pMeshMaterials;

149

m pMeshMaterials = NULL;

}

return TRUE;

Here you use the F1 key to cycle through the different meshes. On faster machines, you might actually
receive this message more than once if you hold down the key. Basically, you just increment the subset

identifier until you get too high. Then you set it back to the beginning:
BOOL CLightingApplication::HandleMessage (MSG *pMessage)
{

if (pMessage->message == WM KEYDOWN &&

pMessage->wParam== VK F1)

if (++m_CurrentSubset > m NumMaterials - 1)

m_CurrentSubset = 0;

You use the F2 key in the same way, only to cycle through the available lights. If you add more lights to

the sample, this code should still work, assuming that you make sure to set the value of MAX LIGHT
properly:

if (pMessage->message == WM KEYDOWN &&
pMessage->wParam

== VK_F2)

if (++m CurrentLight > MAX LIGHT)

m CurrentLight = 0;

It's important to pass the message back to the base class before continuing. This ensures that basic

messages are handled properly:

return CHostApplication::HandleMessage (pMessage) ;

This mesh-loading code is identical to the code from the previous chapter—but there is a minor
semantic difference to keep in mind. This application assumes that each material corresponds to a

completely separate mesh rather than subsets of a single mesh. This doesn’t affect how the mesh is

150

loaded, but if you want to change the behavior of this application, this might be an important thing to

keep in mind:
BOOL CLightingApplication: :LoadMesh ()
{

LPD3DXBUFFER pD3DXMtrlBuffer;

if (FAILED (D3DXLoadMeshFromX ("..\\media\\planes.x",
D3DXMESH MANAGED,
m_pD3DDevice, NULL, &pD3DXMtrlBuffer,
&m_NumMaterials, &m pMesh)))

return FALSE;

D3DXMATERIAL* d3dxMaterials;
d3dxMaterials = (D3DXMATERIAL*)pD3DXMtrlBuffer->

GetBufferPointer () ;

m _pMeshMaterials = new D3DMATERIALS [m NumMaterials];

for (long MatCount = 0; MatCount < m NumMaterials; MatCount++)

{

m_pMeshMaterials[MatCount] =

d3dxMaterials[MatCount] .MatD3D;

m_pMeshMaterials[MatCount].Ambient =

m pMeshMaterials[MatCount].Diffuse;

pD3DXMtrlBuffer->Release() ;

return TRUE;

Here you make sure that lighting is enabled because it gets disabled when you draw the lines and

circles. You also set the light because it may have been changed with a keyboard command. If you

151

were worried about optimization, you would probably want to place the setLight call in the message
handler so that the light is only set when necessary rather than with each frame. However, in these first
samples, | am choosing clarity over performance. Also, if you animate any of the lighting parameters,

you need to reset the light each frame:
void CLightingApplication: :Render ()
{
m_pD3DDevice->SetRenderState (D3DRS_LIGHTING, TRUE);

m_pD3DDevice->SetLight (0, &m Light[m CurrentLight]);

The material denotes the subset, which in your case denotes which resolution mesh you want to display.
Set the material and then draw the individual subset. The data is now in the hands of the device. It
draws the mesh and uses the lighting parameters and the vertex information (including the vertex
normal) to compute the lighting for each vertex. The math | discussed is invisible to you. You get

shaded geometry thanks to hardware:
m_pD3DDevice->SetMaterial (&m pMeshMaterials[m CurrentSubset]);

m_pMesh->DrawSubset (m_CurrentSubset) ;

Finally, you draw the lights themselves, completing this particular frame:

RenderLightVisuals () ;

This code creates a point light that is white and positioned one-and-a-half units above the origin. Here
the light has a range of five units and attenuates linearly over that range. With this or any of the
following light structures, you can experiment with changing these values either here or in the Render
function. For example, you might want to set up the initial values here but change the position of the

light within the Render function to move the light around:

void CLightingApplication::InitializeLights()

{
ZeroMemory (&m Light [POINT LIGHT], sizeof (D3DLIGHTS8));
m Light [POINT LIGHT].Type = D3DLIGHT POINT;
m Light [POINT LIGHT].Diffuse.r =

m Light [POINT LIGHT].Diffuse.g =

Il
=

m Light [POINT LIGHT].Diffuse.b .0f;
m Light [POINT LIGHT].Position =
D3DXVECTOR3 (0.0f, 1.5f, 0.0f);

m Light [POINT LIGHT] .Range = 5.0f;

152

m Light [POINT LIGHT].AttenuationO 0.0f;

m Light [POINT LIGHT].Attenuationl 1.0f;

The second light is a simple directional light. | include it here for the sake of completeness, but the

previous sample application was really a better place to experiment with directional lights because of

the curved surfaces. Conversely, | include a flat plane for this sample because it is much easier to see

the subtle effects of attenuation on a flat surface:

ZeroMemory (&m Light [DIR LIGHT], sizeof (D3DLIGHTS8));
m_Light[DIR_LIGHT] . Type = D3DLIGHT_DIRECTIONAL;
m Light[DIR LIGHT].Diffuse.r =

m Light [DIR LIGHT] .Diffuse.g =

Il
—

m Light [DIR LIGHT] .Diffuse.b .0f;

m Light [DIR LIGHT].Direction =

D3DXVECTOR3 (-1.0f, -1.0f, 1.0f);

The last light you set is the spot light. Notice how many more parameters it needs to define how it acts.

This should give you an indication of how much math is necessary to achieve spot light effects. | also

include another D3DX function here. (It's actually a macro.) D3DXToRadian converts degree values to

radians. This can be useful if you are used to thinking in degrees:

}

ZeroMemory (&m_Light [SPOT LIGHT], sizeof (D3DLIGHTS8)):;
m Light [SPOT LIGHT].Type = D3DLIGHT SPOT;

m Light [SPOT LIGHT].Diffuse.r =

m Light [SPOT LIGHT].Diffuse.g

m Light [SPOT LIGHT].Diffuse.b = 1.0f;
m Light [SPOT LIGHT].Direction =

D3DXVECTOR3(0.0f, -1.0f, 0.0f);
m Light [SPOT LIGHT].Position =

D3DXVECTOR3(0.0f, 5.0f, 0.0f);
m Light [SPOT LIGHT].Theta = D3DXToRadian (10.0f) ;
m Light [SPOT LIGHT].Phi = D3DXToRadian (60.0f) ;
m Light [SPOT LIGHT].Falloff = 5.0f;
m Light [SPOT_ LIGHT] .Range = 10.0f;

BOOL CLightingApplication::InitializeLightVisuals/()

{

153

if (FAILED (m pD3DDevice->CreateVertexBuffer (NUM VERTICES *
sizeof (VISUALS VERTEX),
D3DUSAGE WRITEONLY,
D3DFVF VISUALSVERTEX,
D3DPOOL DEFAULT,
&m _pLightsBuffer)))

return FALSE;

VISUALS VERTEX *pVertices;

if (FAILED (m pLightsBuffer->Lock (0,
NUM_VERTICES * Sizeof(VISUALS_VERTEX),
(BYTE **)&pVertices,

0)))

DestroyLightVisuals () ;

return FALSE;

These lines are the same set of vertex buffer functions that you have been using for the past several
chapters. The only real difference is this last memset line. Here you use memset to set all the bytes in
the vertex buffer to 255. This is a quick and easy way to set all the vertex colors to white. Later, you set
the position data, but all the color data remains unchanged at 255, so you never have to explicitly set

the color values:

memset (pVertices, OxFF, NUM VERTICES * sizeof (VISUALS VERTEX)) ;

These first six vertices represent the sides of the spot light cone. Every dimension is set to a unit value
so that you can easily size the data with a scaling matrix. You can use these same six vertices to draw

umbras and penumbras of any size:
pVertices[0].x = -1.0f; pVertices[0].y = -1.0f;
pVertices[0].z = 0.0f;
pVertices[l].x = 0.0f; pVertices[l].y = 0.0f;
pVertices[l].z = 0.0f;
pVertices[2].x = 1.0f; pVertices[2].y = -1.0f;

pVertices[2].z = 0.0f;

154

pVertices[3].x = 0.0f; pVertices[3].y -1.0f;
pVertices[3].z = -1.0f;

pVertices[4].x = 0.0f; pVertices[4].y = 0.0f;

pVertices[4].z = 0.0f;
pVertices[5].x = 0.0f; pVertices[5].y = -1.0f;
pVertices[5].z = 1.0f;

Here you create a circle with a radius of one. You set the last vertex separately to ensure that the circle
is actually closed. You might notice that you have only one set of vertices for one circle, but you need to
draw several circles (the umbra, penumbra, and the point sphere sides). You'll take a closer look at this

later:
long Counter;

for (Counter = 0; Counter < NUM CIRCLE POINTS - 1; Counter++)

float Angle = 2.0f * D3DX PI /

(NUM_CIRCLE POINTS- 1) * Counter;

pVertices[Counter + NUM CONE POINTS].x cos (Angle) ;
pVertices[Counter + NUM CONE POINTS].y = sin(Angle);
pVertices[Counter + NUM CONE POINTS].z = 0.0f;

}

Il
=

pVertices[Counter + NUM CONE POINTS].x .0f;

pVertices[Counter + NUM CONE POINTS].y = 0.0f;

Il
o

pVertices[Counter + NUM CONE POINTS].z .0f;

m_pLightsBuffer->Unlock();

return TRUE;

As always, make your mother proud and clean up after yourself;

void CLightingApplication::DestroyLightVisuals ()

{

if (m_pLightsBuffer)

155

m _pLightsBuffer->Release();

m pLightsBuffer = NULL;

}
void CLightingApplication::RenderLightVisuals ()
{

D3DXMATRIX Translation;

D3DXMATRIX Rotation;

D3DXMATRIX Scaling;

D3DXMATRIX Transform;

This function looks like the typical vertex rendering function. You turn off lighting because it doesn’t

make sense in the context of these simple lines and then you set the FVF and the stream source:
m_pD3DDevice->SetRenderState (D3DRS_LIGHTING, FALSE);
m_pD3DDevice->SetVertexShader (D3DFVF VISUALSVERTEX) ;
m_pD3DDevice->SetStreamSource (0, m pLightsBuffer,

sizeof (VISUALS VERTEX)) ;

If you are using the spot light, create a translation matrix that will move the cone vertices to the position
of the light:

if (m_CurrentLight == SPOT LIGHT)

D3DXMatrixTranslation (&Translation,
m Light [SPOT LIGHT].Position.x,
m Light [SPOT LIGHT].Position.y,

m Light [SPOT LIGHT].Position.z);

When the cone shifts to the spot light position, you need to figure out how you are going to scale the
cone to show the parameters of the spot light. In this case, you assume that you want to draw the cone
from the light position down to the origin. Now the length of the cone is simply the length of the position
vector, which you compute by introducing another D3DX function. Once the length is computed, you
can use a little trigonometry to find the width of the cone. In this first case, you figure out the width of the
penumbra. Once the width and height are computed, you can create a scaling matrix that will stretch the

cone in your vertex buffer to the correct shape:

FLOAT Conelength =

156

D3DXVec3Length (&D3DXVECTOR3

(m_Light [SPOT LIGHT].Position));

FLOAT ConeWidth = ConelLength *
tan(m Light [SPOT LIGHT].Phi / 2.0f);
D3DXMatrixScaling (&Scaling, ConeWidth, Conelength,

ConeWidth) ;

Finally, you set up your world matrix and draw the penumbra. One obvious omission here is a rotation
matrix that allows you to properly draw the spot light if you change the direction to anything other than
straight down. It’s true that, as the code stands, the spot light visualization does not properly show a
rotated spot light (although the lighting effects are displayed properly). This omission is intentional
because the methods to do this are slightly more than trivial, and | want to focus on lighting. The
procedure needed to properly rotate the light is discussed more in Chapter 40, which focuses more on

jumping through mathematical hoops:
Transform = Scaling * Translation;
m_pD3DDevice->SetTransform(D3DTS WORLD, &Transform);
m_pD3DDevice->DrawPrimitive (D3DPT_ LINESTRIP, 0, 2);

m_pD3DDevice->DrawPrimitive (D3DPT_LINESTRIP, 3, 2);

This code draws the circular base of the penumbra cone on the flat plane. It translates the circle to the
position of the light but keeps the height at ground level. The circle defined in the vertex buffer is not
aligned with the ground plane, so you create a rotation matrix to correct that. You also scale the circle to
the width of the penumbra. Finally, you set the world matrix and render the circle. You could make a
strong argument that it is much easier to simply create several different circles in the vertex buffer rather
than work so hard to reuse one circle. One reason | jump through so many hoops to reuse the circle is
to drive home the point about transformations allowing you to reuse geometry. In a real application, you
probably want to create more geometry and simple transforms, especially if you choose to implement

code to actually rotate the spot light visuals:
D3DXMatrixTranslation (&Translation,
m Light [SPOT LIGHT].Position.x,
0.0f, m Light[SPOT_ LIGHT].Position.z);
D3DXMatrixRotationX (&Rotation, D3DX PI / 2.0f);
D3DXMatrixScaling (&Scaling, ConeWidth,
ConeWidth,

ConeWidth) ;

157

Transform = Rotation * Scaling * Translation;
m_pD3DDevice->SetTransform(D3DTS WORLD, &Transform);
m_pD3DDevice->DrawPrimitive (D3DPT LINESTRIP,
NUM CONE POINTS, NUM CIRCLE POINTS - 1);
D3DXMatrixTranslation (&Translation,
m Light [SPOT LIGHT].Position.x,
m Light [SPOT LIGHT].Position.y,

m Light [SPOT LIGHT].Position.z);

ConeWidth = ConeLength * tan(m Light[SPOT LIGHT].Theta
/ 2.0f);
D3DXMatrixScaling (&Scaling, ConeWidth, Conelength,

ConeWidth) ;

Transform = Scaling * Translation;

m_pD3DDevice->SetTransform(D3DTS WORLD, &Transform);

m_pD3DDevice->DrawPrimitive (D3DPT_LINESTRIP, 0, 2);

m_pD3DDevice->DrawPrimitive (D3DPT_LINESTRIP, 3, 2);

This code draws the umbra using the same procedure:
D3DXMatrixTranslation (&Translation,
m Light [SPOT LIGHT].Position.x,

0.0f, m Light[SPOT LIGHT].Position.z);

D3DXMatrixRotationX (&Rotation, D3DX PI / 2.0f);
D3DXMatrixScaling (&Scaling, ConeWidth, ConeWidth,
ConeWidth) ;

Transform = Rotation * Scaling * Translation;

m_pD3DDevice->SetTransform (D3DTS _WORLD, &Transform);

m_pD3DDevice->DrawPrimitive (D3DPT_ LINESTRIP,

NUM_CONE_POINTS, NUM CIRCLE_POINTS - 1);

158

This code creates a simple sphere representing a point light. You translate the circle to the light's
position, scale it to the point light range, and draw the first circle. Then, you rotate by 90 degrees and

render the second circle, creating a simple sphere:

if (m_CurrentLight == POINT LIGHT)

D3DXMatrixTranslation (&Translation,
m Light [POINT LIGHT].Position.x,
m Light [POINT LIGHT].Position.y,

m Light [POINT LIGHT].Position.z);

D3DXMatrixScaling (&Scaling, m Light [POINT LIGHT] .Range,
m Light [POINT LIGHT] .Range,

m Light [POINT LIGHT] .Range);

Transform = Scaling * Translation;
m_pD3DDevice->SetTransform(D3DTS WORLD, &Transform);
m_pD3DDevice->DrawPrimitive (D3DPT LINESTRIP,

NUM _CONE_POINTS, NUM CIRCLE_POINTS - 1);

D3DXMatrixRotationY (&Rotation, D3DX PI / 2.0f);
Transform = Scaling * Rotation * Translation;
m_pD3DDevice->SetTransform(D3DTS WORLD, &Transform);
m_pD3DDevice->DrawPrimitive (D3DPT LINESTRIP,

NUM CONE POINTS, NUM CIRCLE POINTS - 1);

The last thing you do is reset the world transform to an identity matrix to make sure that your

transformations do not affect how other objects are rendered.
D3DXMatrixIdentity (&Transform) ;

m_pD3DDevice->SetTransform(D3DTS _WORLD, &Transform);

}
In Conclusion...

159

As was stated at the beginning of this chapter, this was the first and last time you are really going to
look at DirectX Graphics lights in any detail because you are going to implement most of your lighting in
shaders. However, the concepts of this chapter should provide a basis for comparison between your
“homegrown” lights and the lights that are natively part of the API. Before moving on, take time to
experiment with animating the lights and changing the light parameters. If you don’t understand specific
parameters or concepts, change the parameters and experiment to get a better idea. Also keep in mind
that some lights might not show up well on lower-resolution geometry. For example, it is difficult to see
the subtle effects of falloff on a very simple mesh. If you are getting results that don’t seem correct,
make sure you are using one of the better subsets. After you get the correct results, examine the other
meshes to see how a degradation in mesh resolution leads to a degradation in shading. The more you

experiment here, the easier it is to grasp the implementation details of shaders.

Of course, | end the chapter with some points to remember:

= Fixed function lighting can be useful, but once you get into shaders, you will be implementing your
own lighting effects. The purpose of this chapter is to provide an introduction to the different light
types.

] Directional lights are the least computationally expensive lights, but they lack subtle and realistic
attenuation effects. They are a good choice if you want to create lights that fill a space, such as
sunlight or fluorescent lights.

] Point lights incorporate attenuation but radiate in all directions. They are good for more discrete
sources of light such as torches or fireballs.

" Spot lights incorporate more attenuation and falloff effects but are much more computationally
expensive than directional lights.

" Often lighting decisions involve choosing between realistic and “good enough.” For instance, all
light attenuates over distance, but in some environments or situations, it’s just not worth the added
processing time to use more expensive lights.

= Experiment with this code. Change the lights and play with their settings. Very soon, you'll be

implementing these effects in your own shaders.

Chapter 12: Introduction to Textures

® Download CD Content

Overview

So far, all of the 3D objects you've seen consist of flat, lit surfaces built from collections of vertices. They
lack the visual detail of real objects. One way to add more detail is to add more geometry, but that can
become computationally expensive. Another way is to add a texture, which is basically a picture
mapped onto the surfaces of the object. For instance, if an object is made of woven cloth, you can

create fantastic results by modeling every thread in the cloth, but a much saner way of adding the detail

160

is to add a texture that looks like woven cloth. Simple textures can create very good results, and the

results get even better when | start talking about bump maps and per-pixel lighting.

In the following chapters and throughout the rest of the book, you will be using textures for many
different uses, ranging from simple texturing to light mapping, bump mapping, and look-up tables for
complex functions. The purpose of this chapter is to introduce the basics of textures and how they are
used. You are going to take a look at how textures are created, stored, changed, and used. This serves
as a starting point for later chapters when you get into more advanced techniques. But first | talk about
the basics.

= How textures are stored in memory.

= Understanding the dimensions of a texture.

= The structure and use of mip maps.

" Creating textures.

= Mapping textures to vertices.

= Telling the device about the texture.

" Performance implications of using textures.

= A sneak peek at advanced texturing techniques.

Textures—The Inside Story

Before | talk about textures themselves, | must delve into some of the concepts that go into texturing. To
fully understand how to create a texture, you'll start by looking at how they are stored in memory and
how they are used. Once you look at the internals of how textures work, you'll be able to talk more

about how to make them work most effectively.

Surfaces and Memory

The earlier versions of DirectX featured the DirectDraw API for rendering 2D graphics. DirectDraw
stored image data in an object called a surface, which in the context of images was different from the
geometric concept of a surface. DirectDraw surfaces stored bitmap data, optimally in video memory.
When DirectDraw was asked to draw something, it would copy the image data from one surface to
another as quickly as possible. Surfaces were better than simple blocks of system memory because the

DirectDraw API could manage them effectively and optimize their usage as much as possible.

With the newer versions of DirectX, the notion of using a surface to move image data directly to the
screen has largely disappeared. In most cases, it's much better to take advantage of the pipeline
described in Chapter 5. However, surfaces remain the basic storage object for image data, only they are
now contained within the more pipeline-friendly texture object. In the context of textures, individual

elements of the image are called texels (texture elements).

Surface memory, whether it resides in system memory or video memory, is conceptually a rectangle

with a given width and height, but it is really one linear range of bytes. It is a common misconception

161

that the number of bytes in a surface is equal to the width multiplied by the height and the number of

bytes per pixel, but as Figure 12.1 shows, this is not necessarily the case.

Pitch

Width

Height Direct3D Surface

Figure 12.1: Image data in memory.

Although you might define a surface by a given width and height, it may have allocated more memory at
the end of each row of data. The length of each row of data is called the pitch, and it may or may not be
equal to the width of the surface. This is extremely important to remember, and you will take a look at

this later in this chapter.

Width, Height, and the Powers of Two

Most graphics cards and implementations restrict texture dimensions to powers of two. This means that
textures are restricted to sizes such as 1x1, 16x16, 128x128, and so on. Note that this does not mean
that they need to be square. Sizes such as 128x16 are also legal. There are a couple of reasons for this
restriction, but the biggest reason is that dimensions which are powers of two are easier for the device
to manipulate quickly. In future versions of hardware, this requirement might be relaxed, but for the
foreseeable future, you should expect that the hardware will require textures to have dimensions with

powers of two.

While I'm on the subject of width and height, remember that the bigger the texture is, the more data

there is to move around the pipeline. Keep your textures as small as possible.

Surface Levels and Mip Maps

In most cases, the manipulation done to the contents of surfaces was minimal for 2D graphics
applications. Most of the time, surfaces contained simple sprites that were copied to various locations
on the screen. In 3D graphics, textures can be applied to objects that are constantly changing their
position and orientation in relation to the camera. As an object gets farther away, that object is drawn

using fewer and fewer pixels on the screen. If the object is textured, that means that the texture must be

162

scaled smaller and smaller as the object gets farther away. The device can do this, but it must process
the texture, which can introduce visual artifacts. Also, it is not optimal to process a large amount of data

if you are only affecting a handful of texels.

You can address both of these problems with mip maps. Mip maps are usually used to represent
several different scaled versions of the same image. For example, if you have a 256x256 texture, you
could create mip maps ranging from 128x128 down to 1x1. A textured object that is very close to the
camera and therefore very large might be drawn with the 256x256 texture. The same object might be
drawn with the 1x1 texture when it is very far away or very small. Usually the device makes decisions

about which version to use.

What’s a Mip Map?

The word mip comes from the Latin phrase multim im parvo, which means that there are many
things in one package. A mip map is a texture that contains several small textures. Originally, |

wanted to write this whole book it Latin, but it's easier just to say mip.

The device can create a range of mip maps when the texture is created, or an artist can create different
mip map levels at design time. Creating the descending levels by hand gives the artist the opportunity to
tweak the image to get the best quality with the smaller number of texels, but no rule says the levels
must have the same contents. For instance, you can create a set of maps that change color as the
maps get smaller. Figure 12.2 shows several levels of a mip-mapped texture. In the top row, the smaller
images are resized versions of the largest texture. In the bottom row, the images are smaller, but the

text has been tweaked at each level to enhance readability.

Mip Map
Levels

Figure 12.2: Mip map levels.

A texture object can be a set of one or more surfaces, depending on how many different levels of mip

maps you need. Each one of these levels is a separate surface object managed by the texture. You can

163

deal with each surface level independently. Throughout the rest of this chapter, you will look at how the

individual levels are created, accessed, and used to render textured objects.

Creating Textures

Before you try to create a texture, it's best to find out what sorts of limitations the device may have. You
can do this by calling your old friend GetDeviceCaps. As always, the D3DCAPSS structure is chock full
of information about what the hardware can and can’t handle. For simple texture creation, the most
important members to check are MaxTextureWidth and MaxTextureHeight. These define how big
the texture can be. Current hardware supports textures of 2,048x2,048 and above, but many older cards
are limited to 256x256 and possibly lower. Other members of the D3DCAPSS8 structure might also be
useful. The TextureCaps member is a set of flags that tells you whether the device is limited to square

textures, whether it supports mip maps, and much more.

In DirectX 8.0, simple textures are represented by the IDirect3DTexture8 interface. This interface is
inherited from IDirect3DBaseTexture8, which serves as a base class for simple textures as well as
more complex textures, such as cube map and volume textures. In this chapter, | only talk about the
simple textures. The other types warrant more in-depth discussion in later chapters. An application can

create a texture object by calling IDirect3DDevice: :CreateTexture:

HRESULT IDirect3DDevice8::CreateTexture (UINT Width, UINT Height,
UINT Levels, DWORD Usage, D3DFORMAT Format,
D3DPOOL Pool,

IDirect3DTexture8 **ppTexture) ;

The width and the Height are the requested dimensions of the texture. (Remember the powers-of-
two requirement.) The Levels parameter is the number of requested mip map levels. If this parameter

is 0, the device creates sublevels of the texture from the requested dimensions down to 1x1.

The Usage parameter allows the texture to be created and set up for certain specialized operations
such as rendering to a texture. That can be a powerful tool, and it is prominent in some of the later

chapters. If you are creating a texture that is going to be applied to an object, set this parameter to zero.

The Format parameter must be a member of the D3DFORMAT enumerated type that represents a pixel
format. All the samples in this book use 32-bit textures with the format D3DFMT A8R8G8BS8 unless
otherwise specified. The reason is that when you get into pixel shaders, you will need all four channels
available to you. Also, current hardware easily supports 32-bit textures with little performance penalty. In
fact, in some cases 32-bit textures are better because the hardware might be optimized for 32-bit
operations. If for some reason you are constrained to 16-bit textures, most of the concepts in these

chapters should still apply.

164

The Pool parameter is subject to the same constraints | discussed for vertex buffers. In most cases,
you should create textures with the D3DPOOL MANAGED setting, although some chapters demonstrate

the uses of other settings.

If this function succeeds, you will have a valid and usable texture object. You can then find out more
about it with some of the members of IDirect3DTexture8. The first thing you can ask is how many

levels were actually created. To do so, call GetLevelCount:

DWORD IDirect3DTexture8::GetLevelCount () ;

This returns the number of surface levels contained within the texture object. Once you know how many

levels are available, you can call GetLevelDesc to get the information about each level:
HRESULT IDirect3DTexture8::GetLevelDesc (UINT Level,

D3DSURFACE DESC *pDescription);

The D3DSURFACE DESC structure contains information about each level. You can use this to see the
width and height of each level, which should tell you which mip map is there. If you decide to manipulate

the data in a level, you can get the actual surface by calling GetSurfaceLevel:
HRESULT IDirect3DTexture8::GetSurfacelevel (UINT Level,

IDirect3DSurface8 **ppSurface);

You now have the pointer to the surface itself. If you had some image data, you could now copy it to the

surface. To do so, call LockRect on the new surface object:
HRESULT IDirect3DSurface8::LockRect (D3DLOCKED RECT *pLockedRect,
CONST RECT *pRect,

DWORD Flags) ;

The application requests a rectangular subset of the surface or the entire surface if pRect was NULL.
The function returns a D3DLOCKED_ RECT structure containing the pitch of the surface along with the
requested bits. The data is now ready to be changed. For write operations, set the Fl1ags parameter to

zero. Once the data is changed, the application can call UnlockRect and release the surface pointer:

HRESULT IDirect3DSurface8::UnlockRect () ;

| have just demonstrated how to create a texture object and jump through all the hoops to set the
texture data, but it's a lot of work and I'm pretty lazy. Most of the time, texture data is stored in a bitmap
file, and it would be nice to have an easy function that would allow you to load a file and easily create a

texture object based on that file. The D3DX library comes to the rescue again.

The easiest way to load a texture from a file is to use the D3DXCreateTextureFromFile function. If it
succeeds, this function creates a valid texture object from an image file. There are analogous functions
for loading a texture from a file in memory and from a resource. | am only going to look at the file

functions, but the other versions are similar:

165

HRESULT D3DXCreateTextureFromFile (LPDIRECT3DDEVICE8 pDevice,

LPCSTR FileName, LPDIRECT3DTEXTURE8 pTexture);

You can use the D3DXCreateTextureFromFile function to easily load an image file into a texture,
but sometimes it can be a little too simple. The D3DxXCreateTextureFromFileEx function gives you

more control over how the texture is loaded:
HRESULT D3DXCreateTextureFromFileEx (LPDIRECT3DDEVICE8 pDevice,
LPCWSTR pFileName, UINT Width, UINT Height,
UINT MipLevels, DWORD Usage,
D3DFORMAT Format, D3DPOOL Pool,
DWORD Filter, DWORD MipFilter,
D3DCOLOR ColorKey,
D3DXIMAGE INFO *pImagelInfo,
PALETTEENTRY *pPalette,

LPDIRECT3DTEXTURES8 *ppTexture);

The D3DXCreateTextureFromFileEx function exposes the parameters from CreateTexture
along with some new ones. When you set the width and height, a value of D3DX DEFAULT tells D3DX
to use the size of the source image. The filter parameters describe how the image is to be filtered when
it is being resized to fit the texture or to build mip maps. If a color key is specified, that color is
transparent in the loaded texture. You can use the D3DXIMAGE INFO structure to retrieve information
about the source image. Finally, you can use the palette structure to set a palette. Because you are

using 32-bit textures, this parameter should be set to NULL.

The D3DX texture creation functions are capable of reading several different file formats, but remember
that the amount of texture memory used by the texture depends on the pixel format of the texture, not
the size of the file. For instance, if you load a JPEG file as a texture, chances are that the texture will

take up much more memory than the size of the JPEG file.

The D3DX functions create the new texture in managed memory. They also try to create a valid texture
size for the image. For instance, if the image is 640x480, it might try to create a 1,024x512 texture to
satisfy the powers-of-two requirement, or it might try to create a 256x256 texture to satisfy a size
limitation of the hardware. In either case, the image is stretched to fill the created texture. This can be
advantageous because you are almost guaranteed that you can load images of nearly any size, but
stretching can produce artifacts or other undesirable side effects. The best way to prevent this is to size
textures appropriately when you are creating the files. That way, you can get the best quality textures
and use space as efficiently as possible.

Textures and Vertices

166

I've talked about how to create the texture, but the texture isn’t really worth much if you can’t use it with
your vertices. So far, the rendering you have done has used simple colored triangles. This is because
your vertex format has included only color information. To use textures, you need to augment the vertex
format with information about how the texture will be mapped onto the geometry. You do this with

texture coordinates.

Texture coordinates map a given vertex to a given location in the texture. Regardless of width and
height, locations in the texture range from 0.0 to 1.0 and are typically denoted with u and v. Therefore, if
you want to draw a simple rectangle displaying the entire texture, you can set the vertices with texture
coordinates (0.0, 0.0), (1.0, 0.0), (0.0, 1.0), (1.0, 1.0), where the first set of coordinates is the upper-left
corner of the texture and the last set is the lower-right corner. In this case, the shape of the texture on
the screen depends on the vertices, not the texture dimensions. For instance, if you have a 128x128
texture, but the vertices are set up to cover an entire 1,024x768 screen, the texture is stretched to cover
the entire rectangle. In the general case, textures are stretched and interpolated between the texture

coordinates on the three vertices of a triangle.

Texture coordinates are not limited to the values of 0.0 or 1.0. Values less than 1 index to the
corresponding location in the texture. Figure 12.3 shows how you can map a texture using different

values. In these examples, every piece of data is the same except for the texture coordinates.

Texture coordinates

(0.0 {1,0) (0.0) (.5.0)

(0.0)

(1.1) (0,.5) (.5..5) (0,2)
Texture coordinates affect scaling and tiling.

(0.1}

Figure 12.3: Simple texture coordinates.

Texture coordinates are not limited to the range of 0.0 to 1.0 either. In the default case, values greater
than 1 result in the texture being repeated between the vertices. In the next chapter, you'll look at some
ways that you can change the repeating behavior, but repeating the texture is the most common
behavior. Figure 12.4 shows how you can use this to greatly reduce the size of your texture if the
texture is a repeating pattern. Imagine a checkerboard fills the screen for a simple game of checkers.
You can create a large texture that corresponds to the screen size, but it is better to have a small
texture and let the device stretch it for you. Better yet, because of the nature of a checkerboard, you can
have a very small texture that is a small portion of the board and then repeat it. By doing this, the
texture is 1/16 the size of the full checkerboard pattern and a lot smaller than the image that appears on

the screen. This reduces the amount of data that needs to move through the pipeline.

167

Texture

.. Quad with

repeating texture

Figure 12.4: Repeating checkerboard patterns.

These are just some simple examples of how texture coordinates work, but the concepts hold true in
less straightforward cases. If you create a triangle shaped like a tiny sliver and you map the texture onto
that, the texture is stretched and pulled to cover the triangle. The next chapter talks a little more about

how the device processes the texture when it is being stretched.

Now that you have looked at how texture coordinates work, let’s look at how to add them to your vertex
format. A device can use up to eight different textures (although this might be limited by the specific
hardware you're using). The following FVF definition defines your vertex as having one set of texture

coordinates. D3DFVF_TEX1 is used for one texture, D3IDFVF TEX2 is used for two, and so on:
#define D3DFVF TEXTUREDVERTEX (D3DEFVF XYZ | D3DFVF DIFFUSE |
D3DFVF TEX1)

struct TEXTUREDVERTEX
{

FLOAT x, vy, z;

DWORD d;

FLOAT u, v;
i
So far, I've limited the discussion to 2D textures because those are the most widely used, but it is
possible to have a 1D texture, which is just like any other texture, but with a height of 1. 1D textures can

be useful with vertex or pixel shaders. The format for a vertex with a 1D texture coordinate follows. In

this case, the D3DFVF TEXCOORDSIZEx flag tells the device there is only one texture coordinate:
#define D3DFVF TEXTUREDVERTEX (D3DFVF XYZ | D3DFVF DIFFUSE |
D3DFVF TEX1 | D3DFVF TEXCOORDSIZEL (0))

struct TEXTUREDVERTEX

168

FLOAT x, vy, z;
DWORD d;
FLOAT u;

i

After the format is created, you can set the texture coordinate values just as you set all the other vertex
data. Lock the buffer, set the data, and unlock the buffer. So far, you have the texture and the vertex

format. The last thing you need to do is tell the device to use the texture.

Textures and the Device

DirectX allows a device to use up to eight textures at a time. Each of these textures is represented by a
texture stage, which can have many different settings and states, as you’ll see in the next chapter. For

the device to use a texture, you must set that texture to a given stage using the SsetTexture function:
HRESULT IDirect3DDevice8::SetTexture: :SetTexture (DWORD Stage,

IDirect3DBaseTexture8 *pTexture);

For the purposes of this chapter, the texture parameter is always a pointer to an IDirect3DTexture8
interface, although in later chapters the syntax is the same for other texture types. The Stage
parameter has a valid range between 0 and 7. You set the texture only for the stages you use. All other
stages default to NULL. When you are done with a texture, or you want to disable texturing for a given
stage, set the texture for that stage to NULL. It is good practice to make sure all texture stages are set to
NULL before ending the program because SetTexture increments the reference count of the texture
when it is set and decrements it when it is set to something else. If the reference count does not get

decremented, you could have resource leaks. The following code demonstrates the way to do this:
m _pD3DDevice->SetTexture (0, m pTexturel);

// Render some stuff

m _pD3DDevice->SetTexture (0, m pTexture2);

// Render more stuff

m_pD3DDevice->SetTexture (0, m NULL);

// Done?

Performance Considerations

Textures take up a lot of memory. That affects not only storage space, but also rendering time because
all of that memory must be pushed through the pipeline as objects are rendered. As | mentioned before,
if there are ways to get by with smaller textures, do so. If a texture has a lot of repetition, create a

smaller version of that texture and tile it using texture coordinates greater than 1.0.

169

On the flipside, if you have a lot of very small textures, you might want to place them all into one
medium-sized texture and use texture coordinates to index into the different regions. This is the idea
behind the text-rendering functions | talk about in later chapters. The downside of this is that it does not
allow you to tile the subtextures in many cases, so sometimes you just need to experiment to see what's

best for your application.

You also don’t want to call SetTexture any more than you have to because setting the texture is
expensive. The previous code snippet demonstrates the basic usage of SetTexture, but take it with a
grain of salt. You do not need to set all the textures to NULL at the end of every frame. That can be
expensive, and it wouldn’t really accomplish anything. Only set textures when you need to, and batch

textured objects together as much as possible.

Performance, as it relates to textures, is heavily dependent on your hardware and your application.
Whenever possible, | give more performance tips, but in reality you should understand some of these

basic tips and then experiment to see what works best for your specific situation.

Advanced Topics

In later chapters, you will be doing some very cool things with textures, so | don’t want to get too far
ahead, but a couple of topics deserve a quick explanation in this chapter. These ideas are expanded in

later chapters, so these sections are brief.

Textures and Color

The interaction between vertex colors and textures is discussed in the next chapter, but it does have an
effect on the code from this chapter. The default mode of interaction between the vertex colors (whether
set as vertex colors or computed from the lighting) is modulation or, in other words, multiplication. If you
think of colors as being in the range of 0.0 to 1.0, the texel color is multiplied by the vertex color to

produce the final output color at a given pixel. In the previous chapter, you took a look at how per-vertex

lighting was interpolated across triangles. The output in a given pixel on the screen is the product (in the
mathematical sense) of the interpolated vertex color value and the texel color value at the interpolated
texture coordinate. As a shaded surface goes from light to dark, the texture is darkened accordingly.

This is just the default behavior. The next chapter looks at how to change that.

The Texture Matrix

You've taken a look at how you can use the world transform to alter the position information in a vertex.
The same concepts apply to the texture coordinate information. In this chapter, you will look at how you
can use very simple transforms to affect the texture coordinates, but in later chapters you will look at
how you can use the texture matrix to produce cool effects such as projective texturing and shadow
mapping. Unlike other transformations, to enable the texture transforms you must tell the device that

you will be using them.

170

Multitexturing

The preceding discussion focused on setting one texture, but there are up to eight texture stages, and
you can apply multiple textures to the same geometry, provided the vertices have more texture
coordinates and the proper texture count in the FVF. Once the vertices are set properly, you can set
more texture stages and place multiple textures on the same object. In the next chapter, you’ll take a

look at how to do that and how to change the way multiple textures interact.

The Application

Because so many chapters use textures and related concepts, the sample application for this chapter is

relatively simple. Figure 12.5 shows a screenshot.

[crost Aphcation =lolx|

Small lexiere sralchesd Simall lnlute bed
i karge oametry

"l

Mg i visuBliE Rt
{ i e 3iong e
ot

Wiz ooloe of |

Ammaned M map o rerry me the mip beedl changes

Figure 12.5: Simple textured quads in the sample app.

The sample application draws four instances of the same quad, all with different textures or different
texture coordinates. You might think | went a little crazy with the texture matrix. Instead of creating
different rectangles with different texture coordinates, the application shows how you can use the
texture matrix to scale the texture coordinates. For instance, the basic vertex data contains coordinates
ranging from 0.0 to 1.0. When you create a scaling matrix that scales by 2.0, the new coordinates are in
the range of 0.0 to 2.0, and so on. This is great for reuse but can obscure what’s really going on. If you
are not sure what is happening, change the texture coordinates directly in the vertex data, get a feel for
how the coordinates work, and then go back to the matrices. The matrices are a great way to easily
show many different coordinates, but in practical terms, usually texture coordinates are fixed. All this

business with the matrix is for demonstration purposes.

The top row shows how you can use very simple textures to fill large spaces. The checkerboard pattern
is an extremely small 2x2 texture. The upper-left rectangle shows how you can scale that very small
texture to fill a larger space. The upper-right rectangle uses the same texture, but the texture

coordinates are set to repeat the texture eight times in both dimensions. You get a full chessboard with

171

a very small texture. This effect is most useful for things such as brick walls and similar repeating

patterns.

The second row demonstrates mip maps. The lower-left rectangle is textured with an image loaded from
a file. As the texture matrix scales the coordinates, the rectangle is filled with more repetitions of the
texture. As each single image becomes smaller, the device uses the smaller mip maps to draw the
texture, but it is difficult to see the transition between the different levels. (This is a good thing.) To
better demonstrate what is going on, the lower-right rectangle is textured with a very simple texture
created in code. Each level of that texture is colored according to its dimensions. The largest level of
256x256 is colored RGB (255, 255, 255), which is white. The 128x128 level is colored a middle gray
atRGB (128, 128, 128).As the levels get smaller, the mip maps get darker. On the lower-right
rectangle, you can explicitly see when the different levels are used. So every time the gray rectangle
changes color, you know that the level has changed for each of the textures in the second row. Figure

12.6 highlights the change.

‘irsushraticon of g lewvel
Mip mappsd tmdure Lsng Cuariossr Color coFsponds in
| ip brnls o mip beril

Same mip
el
WIS IECN G e kel

Mip mapped tedure Lsng Lightor color coemesponds 10
highele i binetls highes rmig e

—f—

Zame M
e

Figure 12.6: Different mip map levels.

Let’s take a look at the code. Texture™ pplication.h is similar to the other application header files

you've created:

#include "Application.h"

class CTextureApplication : public CHostApplication

{

public:

Call this function to create the custom textures. Because you are creating the textures in managed

memory, you call this function only once. The device restores them automatically if need be:
BOOL CreateCustomTextures() ;

void SetupDevice();

172

BOOL CreateGeometry () ;

void DestroyGeometry () ;

CTextureApplication();

virtual ~CTextureApplication();

virtual BOOL PostInitialize();
virtual BOOL PreTerminate();
virtual BOOL PreReset();
virtual BOOL PostReset();

virtual void Render () ;

This application uses a different clear color so you can easily see the textures. This is the first
application in which you override the PreRender function so you can control the clear color before

rendering:
virtual void PreRender () ;

LPDIRECT3DVERTEXBUFFER8 m pVertexBuffer;

The following code shows your three textures. The first is created with image data loaded from a file.

The last two are created using the basic creation functions, and then the contents are set in code:
LPDIRECT3DTEXTURES m pImageTexture;
LPDIRECT3DTEXTURE8 m pMipMapTexture;
LPDIRECT3DTEXTURES m pCheckerTexture;
// These matrices are reusable transformation matrices
D3DXMATRIX m WorldMatrix;
D3DXMATRIX m ViewMatrix;
D3DXMATRIX m ProjectionMatrix;
i

The implementation of the new class is fairly simple. You create a single triangle strip to build your

rectangles and then apply your textures. Let’s look at Texture™® Application.cpp:

#include "TextureApplication.h"

The FVF and vertex structure now include the proper data for one set of 2D texture coordinates.
Because you are not lighting anything, there is no need for vertex normals, and so on. As an exercise,

you might want to add a color component and set the vertex colors to see how the color of the vertices

173

affects the way the textured rectangles look. To do this, add color data to the FVF and the structure and

set the colors when creating the vertex buffer:

#define D3DFVF TEXTUREVERTEX (D3DFVF XYZ | D3DFVF TEX1)

struct TEXTURE VERTEX
{
float x, vy, z;
float u, v;
i
As usual, it's just good practice to initialize the pointers:
CTextureApplication: :CTextureApplication ()

{

m pVertexBuffer = NULL;
m_pCheckerTexture = NULL;
m pMipMapTexture = NULL;

m pImageTexture = NULL;

CTextureApplication::~CTextureApplication ()

{

DestroyGeometry () ;

BOOL CTextureApplication::PostInitialize ()

{

if (FAILED (EasyCreateWindowed (m hWnd, D3DDEVTYPE HAL,
D3DCREATE_HARDWARE_VERTEXPROCESSING)))
return FALSE;

SetupDevice () ;

if (!CreateGeometry())

return FALSE;

174

Call the function that creates the simple textures. This is the only time this function is called:
if (!CreateCustomTextures())

return FALSE;

Create the last texture from a file. Here you use the more simple form of the D3DX texture creation
functions because you don’'t need any special processing. Descending levels of mip maps are created

“under the hood™:
if (FAILED(D3DXCreateTextureFromFile (m pD3DDevice,
"..\\media\\light.bmp",
&m_pImageTexture)))
return FALSE;

return TRUE;

void CTextureApplication::SetupDevice ()
{
D3DXMatrixIdentity (&m ViewMatrix);

m_pD3DDevice->SetTransform(D3DTS VIEW, &m ViewMatrix);

RECT WindowRect;
GetClientRect (m_hWnd, &WindowRect);
D3DXMatrixPerspectiveFovLH (&m ProjectionMatrix,
D3DX PI / 4,
(float) (WindowRect.right - WindowRect.left) /
(float) (WindowRect.bottom - WindowRect.top),
1.0f, 100.0f);
m_pD3DDevice->SetTransform (D3DTS PROJECTION,

&m_ProjectionMatrix);

m_pD3DDevice->SetRenderState (D3DRS_CULLMODE, D3DCULL_NONE) ;

m_pD3DDevice->SetRenderState (D3DRS_LIGHTING, FALSE);

175

The next chapter concentrates solely on texture stage states and what you can use them for. Here you
are telling the device how to process the texture transformation matrix. This informs the device to

process the matrix for 2D texture coordinates:
m_pD3DDevice->SetTextureStageState (0,
D3DTSS TEXTURETRANSFORMFLAGS,

D3DTTFF COUNT2) ;

Here is another mysterious texture stage state. In this case, you are telling the device how to process

mip maps. The concepts of filtering is discussed in the next chapter:
m_pD3DDevice->SetTextureStageState (0, D3DTSS MIPFILTER,

D3DTEXF POINT) ;

BOOL CTextureApplication::PreReset ()
{
DestroyGeometry () ;

return TRUE;

BOOL CTextureApplication::PostReset ()
{
SetupDevice () ;

return CreateGeometry () ;

BOOL CTextureApplication::PreTerminate ()

{

DestroyGeometry () ;

Here you are a good citizen again and make sure that the texture is not being used before you destroy it.
This helps ensure that everything is happy, both this time and the next time you run a DirectX

application:

m_pD3DDevice->SetTexture (0, NULL);

176

Destroying the textures is straightforward. If they exist, send them the way of the dodo by calling
Release. This is where the setTexture call becomes important. If the texture is still in use by the
device, calling Release only once might not fully destroy the object, creating memory leaks. That's

bad:
if (m_pCheckerTexture)

m_pCheckerTexture->Release () ;

if (m_pMipMapTexture)

m_pMipMapTexture->Release();

if (m_pImageTexture)
m_pImageTexture->Release();

return TRUE;

BOOL CTextureApplication::CreateGeometry ()
{
if (FAILED (m pD3DDevice->CreateVertexBuffer (4 *

sizeof (TEXTURE VERTEX),
D3DUSAGE WRITEONLY,
D3DFVFEF TEXTUREVERTEX,
D3DPOOL DEFAULT,
&m_pVertexBuffer)))

return FALSE;
TEXTURE VERTEX *pVertices;
if (FAILED(m_pVertexBuffer—>Lock(O, 4 * sizeof(TEXTURE_VERTEX),
(BYTE **)&pVertices,

0)))

DestroyGeometry () ;

177

return FALSE;

}

pVertices[0].x = -1.0f; pVertices[0].y = 1.0f;

pVertices[0].z = 10.0f;

pVertices[l].x = 1.0f; pVertices[l].y = 1.0f;

pVertices[1l].z = 10.0f;

pVertices[2].x = -1.0f; pVertices[2].y = -1.0f;

pVertices[2].z = 10.0f;

pVertices[3].x = 1.0f; pVertices[3].y = -1.0f;

pVertices[3].z = 10.0f;
For this chapter, the vertex creation is essentially the same as what you've seen in previous chapters.
The only difference here is that you set the vertex coordinates as shown. The coordinates are setto 1.0
because you will be scaling them with the texture matrix. If you find the texture matrix confusing,
comment out the lines that use the texture matrix and change the texture coordinates directly in this part

of the code. Once you are comfortable with the effects of different texture coordinates, reset these

texture coordinates to 1.0 and enable the texture matrix:
pVertices[0].u = 0.0f; pVertices[0].v = 0.0f;
pVertices[1l].u = 1.0f; pVertices[l].v = 0.0f;
pVertices[2].u = 0.0f; pVertices[2].v = 1.0f;
pVertices[3].u = 1.0f; pVertices[3].v = 1.0f;

m_pVertexBuffer->Unlock();

Because you are never going to be switching sources or shaders, you can set them once here and

forget about it. If the device is reset, this function is called again anyway:
m_pD3DDevice->SetStreamSource (0, m pVertexBuffer,
sizeof (TEXTURE VERTEX)) ;

m_pD3DDevice->SetVertexShader (D3DFVF TEXTUREVERTEX) ;

return TRUE;

void CTextureApplication::DestroyGeometry ()

{

if (m _pVertexBuffer)

178

m pVertexBuffer->Release () ;

m pVertexBuffer = NULL;

You override the PreRender function so that you can use a background color that doesn’t clash with
your black and white textures. The one important thing to remember is that if you override the

PreRender function, you must call BeginScene or nothing (good) will happen
void CTextureApplication::PreRender ()
{
m pD3DDevice->Clear (0, NULL, D3DCLEAR TARGET |
D3DCLEAR ZBUFFER, D3DCOLOR XRGB (0, 0, 255), 1.0f, 0);

m pD3DDevice->BeginScene () ;

void CTextureApplication: :Render ()

{
The first thing you do is create a texture matrix variable and use it to make sure that the texture
transform is set to the identity matrix before you draw your first rectangle:

D3DXMATRIX TextureMatrix;

D3DXMatrixIdentity (&TextureMatrix) ;

m_pD3DDevice->SetTransform(D3DTS TEXTUREO, &TextureMatrix);

Here you set the checkerboard texture as your current texture. This texture affects all textured primitives

until you explicitly set a new texture:

m_pD3DDevice->SetTexture (0, m pCheckerTexture);

The first rectangle shows the 2x2 texture as it appears in memory, except that it is stretched to fill a
much larger space. This operation is very fast because the texture is tiny and the 3D card is good at
simple operations such as stretching. One of the points to see here is that if you don’t need a lot of

detail, a very small texture can fill a very large space. There is sometimes no need for large textures:
D3DXMatrixTranslation (&m WorldMatrix, -2.0f, 2.0f, 0.0f);
m_pD3DDevice->SetTransform (D3DTS _WORLD, &m WorldMatrix) ;

m_pD3DDevice->DrawPrimitive (D3DPT_ TRIANGLESTRIP, 0, 2);

179

This second rectangle is based on the same geometry and the same texture, only this time the texture
coordinates are scaled by the texture transformation matrix. This scales the coordinates by 8.0,
meaning that the texture is tiled eight times in both directions. If you are texturing a large area and you

can find pattern, exploit the pattern as much as possible:
D3DXMatrixScaling (&TextureMatrix, 8.0f, 8.0f, 1.0f);
m_pD3DDevice->SetTransform(D3DTS TEXTUREO, &TextureMatrix);
D3DXMatrixTranslation (&m WorldMatrix, 2.0f, 2.0f, 0.0f);
m_pD3DDevice->SetTransform(D3DTS WORLD, &m WorldMatrix);

m_pD3DDevice->DrawPrimitive (D3DPT_ TRIANGLESTRIP, 0, 2);

As in previous chapters, you create an arbitrary scale factor by getting the cosine of the tick count.
Getting the tick count ensures that you get incremental values. Taking the cosine limits the range of

values. You add one and multiply it to tweak the range:
float ScaleFactor = (cos((float)GetTickCount() / 1000.0f) +

1.0) * 10.0%;

With the new scale factor, you can create a texture matrix that continually animates the texture
coordinates in a nice, orderly fashion. Once you are comfortable with all of this, create translation or
rotation matrices to see their effects. As it is written here, the scaling matrix forces the texture to repeat,
prompting the device to use smaller and smaller mip maps. The special mip map texture makes it easier

to see that effect:
D3DXMatrixScaling (&TextureMatrix, ScaleFactor,
ScaleFactor, 1.0f);

m_pD3DDevice->SetTransform(D3DTS TEXTUREO, &TextureMatrix);

Set the texture to the image loaded from the file. The individual mip map levels were created by the

driver:
m_pD3DDevice->SetTexture (0, m pImageTexture);
D3DXMatrixTranslation (&m WorldMatrix, -2.0f, -2.0f, 0.0f);
m_pD3DDevice->SetTransform(D3DTS _WORLD, &m WorldMatrix) ;

m_pD3DDevice->DrawPrimitive (D3DPT_ TRIANGLESTRIP, 0, 2);

Now use the special mip map texture. Note that the texture coordinates are the same for both the image
texture and this texture. As you see the shades of gray changing on the simple texture, you know that

they are also changing on the image texture:
m_pD3DDevice->SetTexture (0, m pMipMapTexture) ;

D3DXMatrixTranslation (&m WorldMatrix, 2.0f, -2.0f, 0.0f);

180

m_pD3DDevice->SetTransform(D3DTS _WORLD, &m WorldMatrix);

m_pD3DDevice->DrawPrimitive (D3DPT_ TRIANGLESTRIP, 0, 2);

BOOL CTextureApplication::CreateCustomTextures ()

{

These are some working variables that you can use when you lock your surface and your surface data:
LPDIRECT3DSURFACES pWorkSurface;

D3DLOCKED RECT WorkRect;

This call creates a very small 2x2 texture that will serve as the checkerboard pattern. Using 32 bits for a

simple black and white texture is overkill, but in later chapters, the 32 bits are needed:
if (FAILED (m pD3DDevice->CreateTexture(2, 2, 0, O,
D3DFMT ABR8GS8BS,
D3DPOOL_MANAGED,
&m_pCheckerTexture)))

return FALSE;

First you get the surface and then lock the rectangle. Using NULL as the rectangle parameter prompts

the surface to give you the full surface—in this case, a whopping 2x2 rectangle:
m_pCheckerTexture->GetSurfaceLevel (0, &pWorkSurface);

pWorkSurface->LockRect (&WorkRect, NULL, O);

Setting the pattern is just a matter of setting the first four bytes (one pixel) to 255 (white), followed by the
next four bytes set to black. Then you set the second row, making sure you take into account the pitch
of the surface. In most cases, the pitch will just be 8 for this simple texture, but it's important you don’t

get too sloppy:

memset ((BYTE *)WorkRect.pBits, Oxff, 4);
memset ((BYTE *)WorkRect.pBits + 4, 0x00, 4);
memset ((BYTE *)WorkRect.pBits + WorkRect.Pitch, 0x00, 4);

memset ((BYTE *)WorkRect.pBits + WorkRect.Pitch + 4, Oxff, 4);

Once you’re done, unlock the rectangle, which updates the surface data. Then, release the surface itself.

Now the texture itself is back in control:

pWorkSurface->UnlockRect () ;

181

pWorkSurface->Release();

Here you create a 256x256 texture to match the 256x256 texture loaded from the file. The device

creates the descending levels of 128x128, 64x64, and so on down to 1x1. Again, 32 bits is overkill:
if (FAILED (m pD3DDevice->CreateTexture (256, 256, 0, O,
D3DFMT ABR8GS8BS,
D3DPOOL_MANAGED,
&m_pMipMapTexture)))

return FALSE;

Here you loop through each level of the texture and get the description. The description lists width and
height, among other properties, and you use the width to set the color. Because the widths of the levels
range from 256 to 1, the color for each level ranges from 255 (white) to 0 (black) when you set all four

channels to the color value:
for (long Level = 0;

Level < m_pMipMapTexture->GetLevelCount (); Level++)

D3DSURFACE DESC LevelDescription;
m_pMipMapTexture->GetLevelDesc (Level,

&LevelDescription) ;

BYTE Color = (BYTE)LevelDescription.Width - 1;

This surface is handled a little differently just to show a different approach. Here you lock the rectangle
directly instead of obtaining the surface and then locking the rectangle. Both approaches are valid and
accomplish the same thing. The only difference here is that you do not have access to the interface of
the surface itself. That's fine because you don'’t really need it, but in some cases you might. If that’s the

case, use the first approach:

m_pMipMapTexture->LockRect (Level, &WorkRect, NULL, O0);

Here you set all the bytes in each row to the color value. Again, it is possible that your pitch will be equal
to the byte width of the rows themselves, but it's not an ironclad guarantee. It’'s better to establish good

habits now:

for (long Row = 0; Row < LevelDescription.Height; Row++)

{
memset ((BYTE *)WorkRect.pBits +

(Row * WorkRect.Pitch),

182

Color,

LevelDescription.Width * 4);

Finally, you unlock the rectangle. There’s no surface to release:

m_pMipMapTexture->UnlockRect (Level) ;

return TRUE;

If you were writing a real application, chances are that you'd do certain things differently, such as
change the format of the textures or use four separate rectangles in the vertex buffer instead of reusing
one. The point of this application was to demonstrate the simple concepts behind texturing. | encourage
you to experiment with some of the settings until you get a feel for how texture mapping works. You

might even want to go back to a previous chapter and apply textures to the simple geometric shapes

you created earlier.

In Conclusion...

| have really just scratched the surface here, and in many cases I've had to defer topics to “later

chapters.” | did this to enable you to concentrate on the most basic concepts while leaving the advanced

topics to later chapters. In some cases, the concepts require their own separate chapters to themselves.

You should come out of this chapter with a basic understanding of what a texture is and how it is used,

but you won't really have the full story until after you're done with the next chapter. Even then, things

don’t get really interesting until | talk about the advanced techniques themselves. In the meantime, let’s

go over some points to remember:

] A surface is the entity that stores image/bitmap/texel data in a way that is easily accessed by the
device.

" A texture contains one or more surfaces. The surface is a holder for the data, but the device
interacts with the texture when mapping the data onto geometry.

= Mip maps provide a mechanism for specifying multiresolution textures.

= You can map textures onto geometry by adding texture coordinates to the vertex format.

= Texture coordinates greater than 1.0 cause the texture to repeat (unless the texture stage is set to
do something different).

= Textures can consume a lot of resources and slow down performance if used improperly. Use the
smallest textures you can get away with.

= Batch textured objects together to avoid unnecessary texture switching.

Chapter 13: Texture Stage States

183

® Download CD Content

Overview

In the previous chapter, you looked at some of the fundamentals of textures and setting texture stages.

The code had a couple of mysterious calls to SetTextureStageState, along with the promise that
this chapter would fill in the blanks. This chapter rounds out the discussion of the basics of texturing by
describing how to control texturing by setting the state of each texture stage. The state of each stage
defines how the device deals with that texture and how the texture can interact with other texture stages
or in some cases with the vertex data. Many books focus on creating a wide variety of effects by
manipulating various stage states to influence blending and texture mapping. Because the focus of this
book is shaders, this chapter concentrates less on the blending aspects of texture stage states and
more on the way that the device processes the texture before each texel is handed to the pixel shader.
Rather than present a laundry list of all the texture stage states, | cluster the individual states according
to their basic functionality. With that in mind, this chapter covers the following concepts:

Note
Many of these stage states are dependent on whether the device supports them. If you

are writing an application that is going to be widely distributed and you want to be
absolutely sure that the device supports your settings, you should check the device
capabilities with GetDeviceCaps and have a fallback plan in case the setting is not
supported. If you try a setting from this chapter and it doesn’t seem to have an effect,
chances are the device does not support that setting.

" Setting the texture stage states.

" Blending textures with color operations.

" Setting texture coordinate states to control mapping.

" Controlling texture filtering and mip mapping.

" Interacting with shaders.

Setting the Texture Stage State

As you saw in the last chapter, you can set textures to one or more of up to eight different stages. Each

stage has a default state, and the sample code from the previous chapter worked with most of those

defaults. Now you will experiment with setting different stage states. You set a texture stage state with

the appropriately named SetTextureStageState:
HRESULT IDirect3DDevice8::SetTextureStageState (DWORD Stage,
D3DTEXTURESTAGESTATETYPE Type,

DWORD Value) ;

The first parameter determines the stage being set. The second parameter is one of several stage state
types, which | discuss later. The final parameter is the actual setting. The state type determines the

range of values for this parameter.

184

As you’ve seen with transformation matrices, textures, and other settings, the texture stage state
remains true until it is set to something else. There is no reason to set the stage state unless you need

to set it to a new setting. Each setting remains in effect throughout the lifetime of the device.

The following sections list each of the state types by general category. Whenever possible, I've grouped
them together in a way that makes the most logical sense. In some cases (such as bump mapping), a

full discussion is deferred until a later chapter when | have the chance to discuss the topic in depth.

Blending and Multitexturing

The topic of blending and multitexturing is covered extensively in other texts and examples. Also, the
new pixel shader syntax supercedes much of the blending functionality. It is for these reasons that this
chapter provides only a basic explanation on the topic of blending multiple textures. If you set multiple
texture stages and a set of vertices has more than one set of texture coordinates, multiple textures are
applied to the geometry. This is called multitexturing. Figure 13.1 shows two single-textured rectangles

and one multitextured rectangle.

Texture 1 Texture 2 Texture 1

x
Texture 2

Figure 13.1: Multitextured rectangles.
Wrapped
Texture

Mirrored
Texture

Texture with
Border

Clamped
Texture

L

Figure 13.2: Different addressing modes applied to rectangles.

The color values of the textures must be blended with some mathematical function, and you can set that
function with different stage state parameters. In Figure 13.1, the top two rectangles each display a

single texture. The lower-left rectangle multiplies the texture values together, but the lower-right

185

rectangle subtracts the second texture from the first. You can use many different operations and

settings together to produce interesting effects.

The texture stage state types involved with blending are described in the following sections.

D3DTSS_COLOROP and D3DTSS_ALPHAOP

The D3DTSS_COLOROP state sets the color operation used to blend the textures. The

D3DTSS ALPHAOP state sets the operation applied to the alpha channels of the textures. When you use
these types, the value parameter must be a member of the D3IDTEXTUREOP enumerated type. Table
13.1 describes some of these operations. There are many more operations available, but the table gives
a flavor of what you can do. If you'd like to experiment with other operations, the SDK sample
application MFCTex provides an easy way to experiment. These operations assume that one or more

arguments are set.

Table 13.1: D3DTEXTUREOP Values

D3DTEXTUREOP Comments

D3DTOP_DISABLE This operation disables this stage and every stage after.
Setting this value for stage 0 disables texturing altogether.

This is the default value for every stage greater than 0.

D3DTOP_SELECTARGI1 The first argument is the output for this stage. There is no

computation involved.

D3DTOP_SELECTARG2 The second argument is the output for this stage.

D3DTOP MODULATE The two arguments are multiplied together to produce the

output value. This is the default operation for stage O.

D3DTOP_MODULATE2X The arguments are multiplied and the results are then
multiplied by two. This has the effect of brightening the

output.

D3DTOP MODULATE4X The arguments are multiplied and then multiplied by four,

brightening the result even more.

D3DTOP_ADD The arguments are added together to produce the output
value.
D3DTOP ADDSIGNED The arguments are added and biases result by —0.5. This

creates a result in the range of —0.5 to 0.5.

D3DTOP_ADDSIGNED2X This operation is the same as the preceding, only multiplied
by two.
D3DTOP SUBTRACT The second argument is subtracted from the first argument.

186

Table 13.1: D3DTEXTUREOP Values

D3DTEXTUREOP Comments
D3DTOP_ADDSMOOTH The product of the two arguments is subtracted from the
sum.

D3DTSS_COLORARG1, D3DTSS_COLORARG2, D3DTSS_ALPHAARG1,
and D3DTSS_ALPHAARG2

You set this stage state to define the arguments for the operations shown earlier. There are several

possible texture argument flags, as shown in Table 13.2.

Table 13.2: Texture Argument Flags

Flag Comments

D3DTA TEXTURE The texture color is the argument in the
operations. This is the default setting for the first

argument.

D3DTA CURRENT The result from the previous stage is used as
the argument. This is the default setting for the

second argument.

D3DTA DIFFUSE The diffuse color of the vertices is used as the
argument.
D3DTA SPECULAR Once the specular color is computed, it is used

as the argument.

D3DTA TEMP If the device supports a temporary register, you
can use it as an argument for color operations.
This is only really useful if the temporary register

is written to in another stage.

D3DTA TFACTOR The texture factor is used as an argument. The

texture factor is discussed more in the next

chapter.

D3DTA ALPHAREPLICATE This is an argument modifier that you can use
with the preceding arguments. This modifier
replicates the alpha value to all of the color

channels.

D3DTA_ COMPLEMENT This is an argument modifier that you can use

with the preceding arguments. This modifier

187

Table 13.2: Texture Argument Flags

Flag Comments

replaces each value (X) with its complement
(1.0-X).

Triadic Operations (D3DTSS_COLORARGO0 and D3DTSS_ALPHAARGO)

Some of the texture operations are triadic, meaning that they take three arguments. If the device
supports triadic operations, you can specify these states to set the third parameter. These arguments

are ignored for operations that take only two arguments.

D3DTSS_RESULTARG

The default operation of the device is to place the result of each blending argument in the current
texture register (D3DTA CURRENT). However, if the device supports it, you can place the result in a
temporary register (D3DTA TEMP). This temporary register can then be used by other stages as an
input. However, the final color value that gets passed further along the pipeline is taken from

D3DTA CURRENT, so the last active stage must write to D3DTA CURRENT.

Checking the Device Caps

The device stores texture operation capabilities in the TextureOpCaps member of the D3DCAPSS
structure. Each capability is of the form D3DTEXOPCAPS operation. The capability flag for
D3DTOP ADD is D3DTEXOPCAPS ADD. You can check the device for compatibility by ANDing the caps

structure member with the flag:

BOOL SupportsAddSigned = Caps.TextureOpCaps & D3DTEXOPCAPS ADDSIGNED;

Bump Mapping

The subject of bump mapping is fully explained in its own chapter. However, four texture stage states
define a 2x2 matrix used in bump mapping calculations. These stage states are

D3DTSS BUMPENVMATOO, D3DTSS BUMPENVMATO1, D3DTSS BUMPENVMAT10, and

D3DTSS BUMPENVMAT11. You can set each of these states to a FLOAT, and the default value for each

of these states is 0.0.

Two states affect the luminance of the bump map. These states are D3DTSS_BUMPENVLSCALE, which
sets the scale for the bump map luminance, and D3DTSS BUMPENVLOFFSET, which sets the offset for

the luminance. Each of these must be set to a FLOAT. The default value for both is 0.0.

Chapter 31 explains how different values affect the bump map.
Texture Coordinate States

188

Several stage states affect the way the texture coordinates themselves are processed by the device.
Each of these states affects the coordinates differently, and some are ignored when using vertex

shaders. Here is a description of each.

D3DTSS_TEXCOORDINDEX

This state tells the stage which texture coordinates to use. The default value for each stage is the index
of that stage. If you are not using a vertex shader, you can use this state to tell the device to use the
texture coordinates from a different stage. If you are using a vertex shader, this state is ignored and the
texture coordinates are passed into the vertex shader in the order they are declared. You can combine
the value for this setting with the flags listed in Table 13.3. These flags are useful for texture-coordinate
generation for an environmental map texture. If you use one of these flags, the texture coordinate index
value does not determine the actual texture coordinates; it determines how the texture is wrapped

based on the address state of that stage.

Table 13.3: Texture Coordinate Index Flags

Flag Comments

D3DTSS TCI CAMERASPACENORMAL The texture coordinates for this stage are
contained in the normal vector, which is

transformed to camera space.

D3DTSS TCI CAMERASPACEPOSITION The same as the preceding flag, only this
time the texture coordinates are based on the

transformed vertex position.

D3DTSS_TCI CAMERASPACEREFLECTIONVECTOR | The reflection vector is computed from the
position and normal vectors, transformed to
camera space, and then used as the texture

coordinates.

D3DTSS TCI PASSTHRU Use the basic texture coordinates. You can

use this flag to disable the other flags.

D3DTSS_ADDRESSU, D3DTSS_ADDRESSV, and D3DTSS_ADDRESSW

In the previous chapter, you saw that the default mode for dealing with texture coordinates outside of

the range of 0.0 to 1.0 was to repeat the texture. This tiling behavior is called wrapping, but it's not the
only mode. There are actually five different ways to deal with texture coordinates outside of the 0.0 to
1.0 range. These three states set the addressing mode for the u and v coordinates, along with the w
coordinate for 3D textures. Table 13.4 lists the addressing modes. Each coordinate can have its own

mode in any combination.

Table 13.4: D3SADTEXTUREADDRESS Modes

189

Mode Comments

D3DTADDRESS WRAP This is the default behavior. The texture is tiled
for coordinates greater than 1.0. For instance, a
coordinate of 1.5 tiles the texture one and a half
times. A value of 5.0 repeats the texture five

times. This is shown on the first rectangle in

Figure 13.2.

D3DTADDRESS MIRROR This is the same as the preceding mode, only
this time the texture is mirrored as it is tiled. For
instance, if the u address is set to this mode, the
texture is flipped along the vertical axis each

time it repeats. This is shown on the second

rectangle in Figure 13.2.

D3DTADDRESS CLAMP This causes coordinates outside of the range of
0.0 to 1.0 to be clamped to either 0.0 or 1.0.
This is also true for interpolated texture
coordinates within the polygon. For example, if
the texture coordinates along the horizontal axis
in a rectangle are from 0.0 to 1.5, the texture is
drawn normally until the interpolated texture
coordinate reaches 1.0. From then on, the last
column of texels repeats. This is shown on the

third rectangle in Figure 13.2.

D3DTADDRESS BORDER If any texture coordinates fall outside of the 0.0
to 1.0 range, the texture is not drawn. Instead,

all pixels are drawn using the border color. The
fourth rectangle in Figure 13.2 shows this

behavior.

D3DTADDRESS MIRRORONCE This mode effectively mirrors around 0.0 by
taking the absolute value of the texture

coordinate. Texture coordinates less than 0.0

are treated as their greater-than-0.0 equivalents.

D3DTSS_BORDERCOLOR

This stage state sets the border color used if the addressing mode is set to D3DTADDRESS BORDER.

This is a full 32-bit value. The default value is 0.

190

D3DTSS_TEXTURETRANSFORMFLAGS

As you saw in the |last chapter, this stage state tells the device how to process the texture coordinates
with a texture matrix. You must set the value of this stage to a member of the

D3DTEXTURETRANSFORMFLAGS enumerated type. Table 13.5 describes the values.

Table 13.5: D3SADTEXTURETRANSFORMFLAGS

Flag Comments

D3DTTFF DISABLE The texture coordinates are not transformed by

a texture matrix.

D3DTTFF_COUNTx The texture coordinates are processed as x
dimensional coordinates. For example,
D3DTTFF_COUNT2 processes 2D coordinates.

The valid values of x are 1 through 4.

D3DTTFF PROJECTED The coordinates are dealt with as a projected

texture. You will take a close look at projected

textures in a later chapter.

Checking the Device Caps

The device stores texture-addressing capabilities in the TextureAddressCaps member of the
D3DCAPSS8 structure. Each capability is of the form D3DPTADDRESSCAPS mode. The capability flag for
D3DTADDRESS BORDER is D3DPTADDRESSCAPS BORDER. You can check the device for compatibility
by ANDing the caps structure member with the flag:

BOOL SupportsClamp = Caps.TextureAddressCaps & D3DPTADDRESSCAPS CLAMP;

Texture Filtering and Mip Maps

In the previous chapter, you saw how you can use mip maps to generate textures at lower levels of

detail. You also saw how different values of texture coordinates can cause a texture to stretch or shrink
across a given piece of geometry. When the device processes textures to fill different areas, it must
apply certain operations to generate larger or smaller textures. This process is called filtering. Filtering is
used both to generate mip maps and to resize a given level when it is actually applied to geometry.

Table 13.6 describes the filtering modes followed by several states that affect filtering.

Table 13.6: D3DTEXTUREFILTERTYPEs

Type Comments

D3DTEXF NONE When used as the mip map filter type, this

setting disables mip maps entirely.

D3DTEXF POINT This method of filtering chooses whichever texel

191

Table 13.6: D3DTEXTUREFILTERTYPEs

Type Comments

is nearest to the destination pixel. This is the
simplest filtering mode, but it can produce
jagged effects. You can use this as either a

magnification or a minification filter.

D3DTEXF LINEAR This method computes a pixel value based on a
weighted average of the four nearest texels in a
2x2 area. This method is much smoother than
the nearest-point version because of the
averaging effect, but this same effect has a
downside. If you are encoding specific values
into a texture on a per-pixel basis, this method
and all the following methods can cause the
data to be changed in ways that are not
necessarily predictable. In most cases, this
doesn’t cause a problem, but it is something to
be aware of. You can use this as either a

maghnification or a minification filter.

D3DTEXF ANISOTROPIC Anisotropic filtering accounts for the angle
between the viewer and the surface. This
method of filtering can produce good results,
especially when used on surfaces that are at
large angles from the view (such as a floor
stretching into the distance). However, it can be
computationally intensive. You can use this as

either a magnification or a minification filter.

D3DTEXF FLATCUBIC This method of filtering is similar to
D3DTEXF LINEAR except that it uses more of
the surrounding pixels during magnification.
When averaging, all pixel values are averaged

equally.

D3DTEXF GAUSSIANCUBIC This method is the same as the preceding type,

only the values in this case are weighted

differently.

Gauss—Isn’t He the Magnet Guy?

192

Carl Friedrich Gauss is responsible for many discoveries and scientific insights. He made
contributions to the studies of magnetism, statistics, mathematics, and many others. He never
worked in the field of computer graphics (having died in 1855). The texture filtering method carries
his name because it is based on his work in how different values affect a final outcome. His theories

are useful in many fields. Computer graphics is but one of them.

D3DTSS_MAGFILTER

This filtering mode controls the way that texels are mapped onto a larger area. When a texture must be

magnified, the device uses this filtering mode to interpolate more pixels. Figure 13.3 shows how a

texture is magnified with a linear filter.

-.

Figure 13.3: Texture magnification.

D3DTSS_MINFILTER

This filtering mode controls the way that texels are mapped to a smaller area. As the area becomes

smaller, different mip maps might be used, but a texture might still need to be minified between mip-

level transitions. Figure 13.4 shows the effect of minification with a linear filter.

.—p—

Figure 13.4: Texture minification.

D3DTSS_MIPFILTER

Similar to the preceding filtering mode, this filter determines how textures are minified during mip map

generation. Setting this value to D3DTEXF NONE disables mip map generation.

D3DTSS_MIPMAPLODBIAS

This stage state does not really affect filtering. Instead it controls which mip map is used. Adding a

positive bias causes the device to use a higher mip map level than it normally would. Adding a negative

193

bias forces the device to use a lower level. For example, setting a positive bias of +1.0 forces the device
to use a higher mip map level, which means that a smaller mip map is used and less data is transferred,
possibly increasing performance at the cost of quality. This value is a FLOAT value, but because the

SetTextureStageState function takes a DWORD value, this value must be cast to a DWORD.

D3DTSS_MAXMIPLEVEL

This stage state sets the maximum mip map level that can be used. The default value is zero, meaning

that the device has access to all mip map levels.

D3DTSS_MAXANISOTROPY

This state identifies the maximum level of anisotropy to use when anisotropic filtering is enabled. You
can find the maximum value of this setting by calling GetDeviceCaps. The default value is 1, but you

can disable anisotropic filtering by setting this value to 0.

Checking the Device Caps

The device stores texture filtering capabilities in the TextureFilterCaps member of the D3DCAPSS
structure. Each capability is listed for the type of operation (mag, min, or mip) and the filter type. The
capability flag for D3DTEXF LINEAR for the magnification filter is D3DPTFILTERCAPS MAGFLINEAR.

You can check the device for compatibility by ANDing the caps structure member with the flag:
BOOL SupportsMipPoint = Caps.TextureFilterCaps &

D3DPTFILTERCAPS MIPPOINT;

Texture Stage States and Shaders

Much of the texture blending functionality is now available in pixel shaders. When you get into pixel
shaders and begin using them, many of the texture blending states will be ignored by the shader in
favor of instructions in the shader itself. However, all of the filtering, bump mapping, and texture
coordinate states remain valid because they determine which texels are actually sent to the shaders, or

they are not available in the shader instruction set.

When using vertex shaders, the D3DTSS TEXCOORDINDEX state is ignored. Texture coordinates are

passed to the shader in the order they were declared.

The Code

Because so many resources are devoted to describing the blending aspect of texture stages, the
following sample focuses on the filtering and texture coordinate aspects. If you are interested in
exploring the blending aspects of SetTextureStageState, look at MFCTex in the SDK samples.
That application lets you easily experiment with different modes and see the code used to generate

them. When | begin talking about pixel shaders, much of the discussion involves the "new way" of

194

blending. In the meantime, it's more valuable to understand the nuances of filtering and texture

coordinates because these states determine how data is passed to the pixel shaders.

Figure 13.5 shows the application in action. The application displays a texture-mapped floor and wall

=

with different addressing modes and filtering modes.

5%%
—

Linear Point
filtering filtering

Figure 13.5: Two different filtering modes.

When the application starts, it checks the device capabilities and alerts the user about modes that are
not supported by the device. Once the application starts, press the F1 key to cycle through addressing
modes. Press F2 to cycle through filtering modes. To simplify the application, | haven’t added code to
omit the unsupported modes. As you cycle through, the device just ignores each unsupported mode.
Experiment with the different modes to get a feel for how they work. Also, you might notice that you are
still using a checkerboard, but it is no longer a 2x2 texture. This is because the 2x2 texture leaves little
information to actually filter. Also, | added an off-center red line to make it easier to see the difference

between wrapped and mirrored textures.

The new class is CTextureStateApplication. There are few changes to the header file. The

following listing is abbreviated, but the full listing is available on the CD (\Code\Chapter 13):

#include "Application.h"

class CTextureStateApplication : public CHostApplication

{

195

public:

This function checks the device capabilities and alerts the user if modes are not available. Once you

understand the capabilities of your device, you might want to disable this function:

void VerifyModes () ;

You need to change the background color again:

virtual void PreRender () ;

These two member variables control which modes are in effect. These are incremented as longs, but

they are cast to appropriate data types when passed to SetTextureStageState:
long m CurrentFilterMode;

long m_ CurrentAddressMode;

In this case, the texture is loaded from a file. It is still a simple checkerboard pattern, but it is higher

resolution so there are more pixels to filter.

LPDIRECT3DTEXTURE8 m pCheckerTexture;

i

Now take a look at TextureState™ Application.cpp:

#include "TextureStateApplication.h"

The vertex format is the same simple single-textured format you used in the last chapter:

#define D3DFVF TEXTUREVERTEX (D3DFVF XYZ | D3DFVF TEX1)

struct TEXTURE VERTEX
{
float x, vy, z;
float u, v;
i
As usual, it's good to initialize everything. In this case, the modes are each set to 1, which should be
valid modes on most hardware:
CTextureStateApplication: :CTextureStateApplication ()
{
m pVertexBuffer = NULL;

m_pCheckerTexture = NULL;

196

m CurrentFilterMode = 1;
m CurrentAddressMode = 1;

}

CTextureStateApplication: :~CTextureStateApplication ()

{

DestroyGeometry () ;

BOOL CTextureStateApplication::PostInitialize ()
{
if (FAILED (EasyCreateWindowed (m hWnd, D3DDEVTYPE HAL,

D3DCREATE HARDWARE VERTEXPROCESSING)))

return FALSE;

SetupDevice () ;

if (!CreateGeometry())

return FALSE;

Here, the checkerboard pattern is loaded from a file. Open the file in an image editor to see what it
really looks like. The off-center red line makes the mirrored mode more obvious. Feel free to substitute

your own texture to see the effects:
if (FAILED(D3DXCreateTextureFromFile (m pD3DDevice,
"Checker.bmp",

&m_pCheckerTexture)))
return FALSE;
The verifyModes function lists the unsupported modes. Because you don’t have any user interface

yet, it uses message boxes to list each unsupported mode. Frankly, | find this annoying. If you agree,

run the application once to see which modes are not supported and then comment out the line:
VerifyModes () ;

return TRUE;

197

void CTextureStateApplication::SetupDevice ()
{
D3DXMatrixLookAtLH (&m ViewMatrix,
&D3DXVECTOR3 (0.0f, 0.25f, 2.0f),
&D3DXVECTOR3(0.0f, 0.0f, 0.0f),
&D3DXVECTOR3 (0.0f, 1.0f, 0.0f));

m_pD3DDevice->SetTransform(D3DTS VIEW, &m ViewMatrix);

RECT WindowRect;
GetClientRect (m_hWnd, &WindowRect);
D3DXMatrixPerspectiveFovLH (&m ProjectionMatrix,
D3DX PI / 4,
(float) (WindowRect.right - WindowRect.left) /
(float) (WindowRect.bottom - WindowRect.top),
1.0f, 100.0f);
m_pD3DDevice->SetTransform(D3DTS PROJECTION,

&m_ProjectionMatrix);

m_pD3DDevice->SetRenderState (D3DRS_CULLMODE, D3DCULL_NONE) ;

m_pD3DDevice->SetRenderState (D3DRS_LIGHTING, FALSE);

BOOL CTextureStateApplication::HandleMessage (MSG *pMessage)
{
if (pMessage->message == WM KEYDOWN &&

pMessage->wParam == VK F1)

Here you increment the addressing mode within the valid range and then use it to set both the u and v
modes. If you want to experiment with setting only one of the two modes, comment out the other line.

Note that the value is cast to the D3DTEXTUREADDRESS enumerated type:

if (++m_CurrentAddressMode > 5)

198

m_CurrentAddressMode = 1;

m_pD3DDevice->SetTextureStageState (0, D3DTSS ADDRESSU,
(D3DTEXTUREADDRESS)m CurrentAddressMode) ;
m_pD3DDevice->SetTextureStageState (0, D3DTSS ADDRESSV,

(D3DTEXTUREADDRESS)m CurrentAddressMode) ;

if (pMessage->message == WM KEYDOWN &&

pMessage->wParam == VK F2)

if (++m _CurrentFilterMode > 5)

m CurrentFilterMode = 1;

This code sets the filter mode for all three operations. In some cases, certain modes might be valid for
one operation but not the others. If you'd like to experiment with different mixtures of modes, add code
that changes individual operations with different keystrokes. For the most part, this should give you a
good general feel for how the modes work. Many pieces of hardware might not support several of the
modes. If that is the case, you can still run the application with the REF device to see the filtering in

action:
m_pD3DDevice->SetTextureStageState (0, D3DTSS MIPFILTER,
(D3DTEXTUREFILTERTYPE)m CurrentFilterMode) ;
m_pD3DDevice->SetTextureStageState (0, D3DTSS MINFILTER,
(D3DTEXTUREFILTERTYPE)m CurrentFilterMode) ;
m_pD3DDevice->SetTextureStageState (0, D3DTSS MAGFILTER,

(D3DTEXTUREFILTERTYPE)m CurrentFilterMode) ;

return CHostApplication::HandleMessage (pMessage) ;

BOOL CTextureStateApplication::PreReset ()

{
DestroyGeometry () ;

return TRUE;

199

BOOL CTextureStateApplication::PostReset ()

{
SetupDevice () ;

return CreateGeometry() ;

BOOL CTextureStateApplication::PreTerminate ()

{

DestroyGeometry () ;

m_pD3DDevice->SetTexture (0, NULL);

if (m_pCheckerTexture)

m_pCheckerTexture->Release () ;

return TRUE;

BOOL CTextureStateApplication::CreateGeometry ()
{
if (FAILED (m_pD3DDevice->CreateVertexBuffer (6 *

sizeof (TEXTURE VERTEX),
D3DUSAGE WRITEONLY,
D3DFVEF TEXTUREVERTEX,
D3DPOOL_DEFAULT,
&m_pVertexBuffer)))

return FALSE;

TEXTURE VERTEX *pVertices;

200

if (FAILED (m pVertexBuffer->Lock(0, 6 * sizeof (TEXTURE VERTEX),

(BYTE **)&pVertices,

0)))

DestroyGeometry () ;

return FALSE;

pVertices[0].x = -1.0f; pVertices[0].y = 0.0f;
pVertices[0].z = 1.0f;
pVertices[l].x = 1.0f; pVertices[l].y = 0.0f;
pVertices[l].z = 1.0f;
pVertices[2].x = -1.0f; pVertices[2].y = 0.0f;
pVertices[2].z = -1.0f;

pVertices[3].x = 1.0f; pVertices[3].y = 0.0f;

pVertices[3].z = -1.0f;
pVertices[4].x = -1.0f; pVertices[4].y = 1.0f;
pVertices[4].z = -1.0f;

pVertices[5].x = 1.0f; pVertices[5].y = 1.0f;
pVertices[5].z = -1.0f;
This application creates a set of vertices in the usual manner. Note that unlike the last application, this

sample does not use a texture matrix to change the texture coordinates. If the addressing mode is set to

wrap or mirror, the texture repeats 20 times; otherwise, it behaves according to the addressing mode:

pVertices[0].u = -10.0f; pVertices[0].v = -10.0f;

pVertices[1l].u 10.0f; pVertices[l].v = -10.0f;

pVertices[2].u -10.0f; pVertices[2].v 10.0f;
pVertices[3].u = 10.0f; pVertices([3].v = 10.0f;
pVertices[4].u = -10.0f; pVertices[4].v = -10.0f;
pVertices[5].u = 10.0f; pVertices[5].v = -10.0f;

m_pVertexBuffer->Unlock();

m_pD3DDevice->SetStreamSource (0, m pVertexBuffer,

201

sizeof (TEXTURE VERTEX)) ;

m_pD3DDevice->SetVertexShader (D3DFVF TEXTUREVERTEX) ;

return TRUE;

void CTextureStateApplication::DestroyGeometry ()

{

if (m _pVertexBuffer)

m pVertexBuffer->Release();

m pVertexBuffer = NULL;

Again you override PreRender so that you can change the clear color:
void CTextureStateApplication::PreRender ()
{
m pD3DDevice->Clear (0, NULL, D3DCLEAR TARGET |
D3DCLEAR ZBUFFER,

D3DCOLOR XRGB (0, 0, 255), 1.0f, 0);

m_pD3DDevice->BeginScene () ;

This is the usual vertex buffer rendering code. Here you render four primitives—two for the “floor” and

two for the “wall”:

void CTextureStateApplication::Render ()

{

m_pD3DDevice->SetTexture (0, m pCheckerTexture) ;

m_pD3DDevice->DrawPrimitive (D3DPT_ TRIANGLESTRIP, 0, 4);

void CTextureStateApplication::VerifyModes ()

202

D3DCAPS8 Caps;

m_pD3DDevice->GetDeviceCaps (&Caps) ;

First you check the addressing modes. Most of these modes should be supported. If the border mode is

supported, the default border color is black:
if (! (Caps.TextureAddressCaps & D3DPTADDRESSCAPS BORDER))
MessageBox (m_hWnd, "The Border Addressing mode

is not available.", "", MB OK);

if (! (Caps.TextureAddressCaps & D3DPTADDRESSCAPS CLAMP))
MessageBox (m_hWnd, "The Clamp Addressing mode

is not available.", "", MB OK);

if (! (Caps.TextureAddressCaps & D3DPTADDRESSCAPS MIRROR))
MessageBox (m_hWnd, "The Mirror Addressing mode

is not available.", "", MB OK);

if (! (Caps.TextureAddressCaps & D3DPTADDRESSCAPS MIRRORONCE))
MessageBox (m_hWnd, "The Mirror Once Addressing mode

is not available.", "", MB OK);

if (! (Caps.TextureAddressCaps & D3DPTADDRESSCAPS WRAP))
MessageBox (m_hWnd, "The Wrap Addressing mode
is not available.", "", MB OK);
if (! (Caps.TextureFilterCaps & D3DPTFILTERCAPS MAGFPOINT))
MessageBox (m_hWnd, "The Point Filtering mode

is not available.", "", MB OK);

if (! (Caps.TextureFilterCaps & D3DPTFILTERCAPS MAGFLINEAR))

MessageBox (m_hWnd, "The Linear Filtering mode

is not available.", "", MB OK);

203

if (! (Caps.TextureFilterCaps & D3DPTFILTERCAPS MAGFANISOTROPIC))
MessageBox (m_hWnd, "The Anisotropic Filtering mode

is not available.", "", MB OK);

if (! (Caps.TextureFilterCaps & D3DPTFILTERCAPS MAGFAFLATCUBIC))
MessageBox (m_hWnd, "The Cubic Filtering mode

is not available.", "", MB OK);

if (! (Caps.TextureFilterCaps &
D3DPTFILTERCAPS MAGFGAUSSIANCUBIC))
MessageBox (m_hWnd, "The Gaussian Cubic Filtering mode

is not available.", "", MB OK);

Depending on the hardware, many of these filtering modes might not be available. Also, you are making
the assumption that if they are supported for the magnification operation, they are supported for all
operations. This is not necessarily a good assumption, but this function is abbreviated for simplicity. In
any case, both point and linear filters should be available. Take a look at how they affect the texel data.
The other filters behave similarly to the linear filter in that they average (blur) texel values. The

differences lie in how much they blur the values and how much detail is retained.

In Conclusion...

Many readers might be shocked and dismayed that | have omitted blending operations from the sample.
There are many reasons for this, not the least of which is the fact that MFCTex is such a good sample.
My intentions with this chapter were to explain many of the settings to provide a context for using
MFCTex, as well as set up the context for pixel shaders. Shaders represent the new way of blending,
and as shader hardware becomes prevalent, the interesting blending operations will probably happen in
shaders. The next chapter features a brief look at how blending modes are set, but after that, all

blending will be done with shaders.

More importantly, | wanted to cover all the other aspects of the texture states because there seems to

be relatively little available on those topics. This chapter should give you a good feel for how the other

texture states are used and how textures are mapped. Let’s recap the important bits:

= All texture stage states are listed in the device capabilities structure. To be completely sure a
given setting is available, check the caps.

= Texture blending between states is based on a blending operation and two (in some cases, three)

arguments.

204

The texture coordinate index states determine whether the texture coordinates are used as-is or

they are computed in hardware.

] The texture addressing modes determine how the device deals with coordinates outside the range
0.0 to 1.0. The most common setting is to wrap or repeat the texture, and some hardware might not
support all settings.

= The texture transform settings determine how texture matrices affect texture coordinates. The
subject of projected textures is addressed later.

= The texture filtering settings determine how the device filters textures when they are resized
during texture mapping. It's possible that certain hardware does not support many of the filtering
modes.

= Many texture stage states are ignored when working with vertex or pixel shaders.

= All texture stage states are persistent until they are reset. If you set a blending operation, that
operation applies to all objects unless it is explicitly changed. As usual, minimize changes by

batching objects (where it makes sense t0).

Chapter 14: Depth Testing and Alpha Blending

® Download CD Content

Overview

Each chapter in this part has highlighted the steps needed to draw content to the screen. | discussed
how to set up the vertices, how to transform and light them, and how to apply textures. The final step |

need to discuss is what happens to the data right before it actually gets drawn to the frame buffer.

This final step is called rasterization. The transformation operations discussed in the previous chapters
determine how and where geometric data is converted to pixels on the screen. The color, lighting, and
texture operations determine the color of that pixel. By the end of this chapter, you will have walked
through most of the fixed-function pipeline. The following concepts apply to the tests each pixel must
pass before it reaches the screen:

" Depth testing and the Z buffer.

" W buffering—an alternative to Z buffering.

" Setting the Z bias.

" Clearing the depth buffer.

] Alpha blending transparent pixels.

] Creating transparent textures.

" Alpha testing for faster transparency.

] Performance considerations for per pixel tests.

Depth Testing

When you draw a 2D scene, it's usually pretty easy to determine what objects are in front of each other.

Like a painter, you can draw the background, the various objects in the scene, and perhaps a set of

205

foreground objects. As long as you are fairly careful about the order of drawing, everything works out
pretty well. Graphics programmers use this technique in simple cases, referring to it as the Painters

Algorithm.

3D rendering is usually a different story. For any given pixel, it is difficult to determine what is being
shown and which object is in front of the others. As each triangle is rasterized, you must make a
decision about whether the new pixel is closer to the viewer and thus should be drawn, or whether the

new pixel is actually behind the previously drawn objects and should be ignored.

This problem is solved with a depth buffer and depth testing. The depth buffer is enabled by default, but

you can enable or disable it by setting the render state:

m_pD3DDevice->SetRenderState (D3DRS_ZENABLE, TRUE) ;

As objects are drawn, the device updates a depth buffer in addition to the color buffer. The value of
each pixel in the depth buffer is the distance between the viewer and that pixel. Figure 14.1 shows a

rendered scene and an image of that scene’s depth buffer.

Figure 14.1: A scene and the contents of its depth buffer.

The values in the depth buffer are not stored as literal distances from the viewer. Depth values range
from 0.0 to 1.0. Pixels that fall exactly on the near plane have a value of 0.0; pixels that fall exactly on
the far plane have a value of 1.0. Note that the accuracy of the depth test is limited by the bit count of
the depth buffer. If your near and far planes are too far apart, you might have problems with the
accuracy of the depth test. For example, an 8-bit depth buffer, has only 256 different depth values. If
your near and far planes are 256,000 units apart, pixels less than 1,000 units apart might not compare
correctly because there just isn’'t enough resolution. Of course, this is a worst-case scenario, but it's
important to keep this in mind when setting near and far planes or when rendering objects that are very

close to each other.

As each new pixel is drawn onto the screen, the device tests its depth value against the value currently
in the depth buffer. If the new pixel passes the test, the depth buffer is updated with the new value, and
the color buffer is either replaced or blended with the new pixel color. This test is one of the comparison

functions listed in Table 14.1.

Table 14.1: D3DCMPFUNC Values

206

Value Comments

D3DCMP_NEVER The test never passes.

D3DCMP_LESS The test passes if the new value is less than the

reference value.

D3DCMP EQUAL The test passes if the new value is equal to the

reference value.

D3DCMP_LESSEQUAL The test passes if the new value is less than or

equal to the reference value.

D3DCMP GREATER The test passes if the new value is greater than

the reference value.

D3DCMP_NOTEQUAL The test passes if the new value is not equal to

the reference value.

D3DCMP GREATEREQUAL The test passes if the new value is greater than

or equal to the reference value.

D3DCMP_ALWAYS The test always passes.

In depth testing, the reference value is the current value of the pixel in the depth buffer. You can set the

testing function with another render state setting:

m pD3DDevice->SetRenderState (D3DRS ZFUNC, D3DCMP ALWAYS) ;

The default comparison function is D3DCMP_LESSEQUAL. Only pixels with a depth value that is less
(closer to the viewer) or equal are used to update the color buffer. All others are thrown away because
other objects are in front of them. This is the usual behavior, although some multipass techniques might

require a different comparison function.

W Buffering

As you may have noticed, all the depth test settings are named “Z enable” or Z function.” The most
common type of depth buffer is a Z buffer, but it has a drawback. Because of the way the Z buffer is
computed, depth values are unevenly distributed. This means that near objects can be rendered
correctly, but far objects might have problems testing correctly. Some people solve this by using W
buffering.

Note
W buffering can be very useful for depth testing, but it can also cause problems when

you are doing some forms of cube mapping and other effects. The Z buffer is a more

general depth buffering solution despite its limitations.

207

W buffering, if it is supported by the hardware, uses the W component that you added to the
homogeneous coordinates. The W buffer distributes depth information in a more linear manner, which
might help eliminate some visual artifacts, but it is still ultimately limited by the resolution of the depth
buffer. Also, W buffering can be incompatible with some forms of environmental mapping. To be
consistent, you will not be using W buffering in this book, but keep it in mind if you encounter a situation
where Z buffers are insufficient for your specific needs. You enable the W buffer with the following

render state:

m_pD3DDevice->SetRenderState (D3DRS_ZENABLE, D3DZB USEW) ;

Z Bias

Sometimes two objects must be rendered at the same depth. This occurs frequently in techniques that
require multiple rendering passes, such as planar shadows (discussed in a later chapter). Under normal
conditions, these objects might pass or fail the depth test with unpredictable results. If this is the case,

you can bias the depth test for different objects with the following render state:

m_pD3DDevice->SetRenderState (D3DRS_ZBIAS, 1);

The value of the Z bias can be any value between 0 and 16. Higher values render in front of lower
values. When drawing two passes, set the bias to 0 for the first pass and render the object. Then, set
the bias to 1 and render the second pass. The second pass is guaranteed to pass the depth test. Under

normal conditions, it's best to set the bias back to 0.

Clearing the Depth Buffer

In previous calls to Clear, you have set the clear value of the depth buffer to 1.0. Because 1.0 is the
farthest value, the depth buffer can be rewritten by any pixel that appears in the view volume. If for
some reason that is not the behavior you need, you can set the clear value lower. For instance, if you
set the clear value to 0.0, all new pixels fail the depth test and nothing is rendered. Most of the time, you

should set this value to 1.0.

Alpha Blending

Assuming the new pixel has passed the test, it can be updated in the actual color buffer. In previous
chapters, all polygons and textures were completely opaque, but transparent or semitransparent
rendering is possible using the alpha channel. When you use 32-bit colors, the alpha channel consists
of the final 8 bits, creating 256 different levels of transparency. An alpha value of 0.0 is completely
transparent; a value of 1.0 is completely opaque. Alpha values can be part of the vertex color, or they
can be part of a texture. Also, as discussed in the last chapter, they can be derived from alpha
operations within the texture stage states and may be a function of the vertex color and several different

textures.

Setting the alpha value of a vertex is simple. Just set the alpha channel of that color to whatever value

you need. Setting the alpha value in a texture might require a bit more work.

208

Alpha in 32-Bit File Formats

Certain file formats such as Targa (.tga) files may contain an alpha channel if the image editor saved it
properly. If this is the case, the D3DX functions load the texture properly with the alpha channel intact. If
your image editor supports it, you can manipulate the colors and the alpha channel and save the texture

in a .tga file—and you have a full 32-bit texture.

Alpha in the DirectX Texture Tool

If your image editor does not support these file formats, you can use the texture tool provided with the
DirectX SDK. The DirectX texture tool allows you to load a bitmap, load an alpha channel, and save

a .dds file that you can easily load with D3DX. To do this, start the texture tool and choose the Open
option from the File menu. Open an image file, which will serve as the color portion of your texture. Now
choose Open onto Alpha Channel of this Texture from the File menu and open an image file. The
grayscale version of this new file serves as the alpha channel for this texture. The texture tool adjusts
the colors in the displayed bitmap to give a visual representation of the 32-bit texture. Figure 14.2 shows

the texture tool in action.

¥ Direct Testure Tool - Light dds Aglﬂ
Ele £t Mew Formal Windw Helo

D|=(=] %]

B ghe ahls fABRSGEES, 10N

Faady A 64, ABRDGEDS, 10304 bytns -

Figure 14.2: Creating 32-bit textures with the DirectX texture tool.

After the file is created, the D3DX functions can load the new texture with the alpha channel intact.

Alpha from ColorKey

As you may recall, the D3DXCreateTextureFromFileEx function has a ColorKey parameter. If this
color is set, D3DX analyzes the image file and replaces every occurrence of that color with a fully
transparent alpha value. This is great for producing simple transparency, but it can produce hard edges.
Because the alpha values are either fully transparent or fully opaque, there is no way to produce

smoother gradations of transparency the way you might be able to with an image editor.

Enabling Alpha Blending

209

Once you have transparency in your textures or vertices, you still need to enable alpha blending in the

device:

m_pD3DDevice->SetRenderState (D3DRS_ALPHABLENDENABLE, TRUE) ;

Once alpha blending is enabled, you still need to set the blending modes for both the source and the
destination colors. The blending modes determine how the source color (the new pixel) and the

destination color (the current pixel) each contribute to the new color. The most common modes follow:
m pD3DDevice->SetRenderState (D3DRS SRCBLEND, D3DBLEND SRCALPHA) ;

m_pD3DDevice->SetRenderState (D3DRS_DESTBLEND, D3DBLEND INVSRCALPHA) ;

This is the most common setting because it calculates basic transparency. For instance, suppose you
were rendering a dirty window using an alpha value of 0.1, which is fairly transparent. These settings

give you a final color using the following equation:
R=0.9*D + 0.1*S

Most of the contribution still comes from the current color because the new object is so transparent. The
documentation describes many other blending modes. These modes can be useful in some multipass

rendering operations but for simple transparency, use the settings shown here.

When drawing transparent objects, keep in mind that both alpha blending and depth testing affect the
output. Imagine looking through a window. If you render the interior first and then the window,
everything will be correct. If you render the window and then the interior, the interior will fail the depth
test and never get rendered. You'll be looking through a window at nothing. There are some ways

around this, but the best way to avoid it is to pay attention to the order in which you render objects.

Alpha Test

The last test | talk about is the alpha test. The alpha test is somewhat similar to the depth test in that it
allows you to set a comparison function that determines whether or not a pixel is drawn. Imagine a
texture that's been loaded with a color key. There may be many pixels never rendered because they are
fully transparent, yet the hardware must compute the blended color for each of those pixels. However, if

the alpha value is zero, there’s no need to blend; the new pixel doesn’t contribute anything!

That's where the alpha test comes in. If the alpha test is enabled, the hardware compares the alpha
value of each pixel to a reference value before it blends the colors. If the pixel fails the alpha test, the

pixel is discarded right away and the hardware doesn’t spend any time computing the new colors.

There is another benefit as well. If you create 2D sprites or billboards and you do not alpha test, the
device updates the depth buffer based on the shape of the polygon. If you enable alpha testing, the
depth buffer is only updated when there are visible pixels in the texture. This helps ensure a correct

depth buffer. This effect is demonstrated in the sample code.

210

Enabling alpha testing involves three steps. You must enable testing, set a comparison function (as
described in Table 14.1), and set a reference value. The following code sets up an alpha test that

discards all pixels with alpha values of 0:
m pD3DDevice->SetRenderState (D3DRS ALPHATESTENABLE, TRUE) ;
m_pD3DDevice->SetRenderState (D3DRS_ALPHAREF, 0x00000000) ;

m_pD3DDevice->SetRenderState (D3DRS_ALPHAFUNC, D3DCMP GREATER) ;

Any pixel with a pixel value of 0 is immediately discarded. In fact, in simple cases, you don’t even have

to enable blending at all.

Performance Considerations

Any of these tests takes time. If you are doing something extremely simple and you don’t need depth
testing, turn it off. If you don’t have any transparency, do not enable alpha blending. Also, if you have

only a few transparent objects, turn blending on for those objects but off for everything else.

The alpha test, on the other hand, can be your friend. Performing the alpha test is much cheaper than
alpha blending, so the more pixels you can discard with the test, the better off you'll be. Of course, if you
know that everything will pass the test because you have no transparent objects, make sure you disable
the test.

The performance usage of these tests is mostly common sense. Remember that these are simple
operations, but they are occurring for each and every pixel, usually several times per pixel in complex
scenes. Even when running at 640x480, this can mean a couple million tests per frame. In cases where

they help you, turn them on. Turn them off when they don’t help you.

The Code

The sample application for this chapter demonstrates the effects of depth testing, alpha testing, and
alpha blending on textured geometry. | also revisit last chapter’s texture stage states and demonstrate
how you can use them to modify alpha values on the fly. One thing to keep in mind about this source
code is that it is another “Do as | say, not as | do” chapter. The render states and textures are set many
times. In this simple application, it doesn’t really matter, but in other applications it's a good idea to

minimize these changes as much as possible. The tests are the focus here, not efficient rendering.

The first thing this application does is load two texture files. The first texture is stored as a .dds file with
an explicit alpha channel. The second texture is stored as a bitmap, and you will use a color key to set

the alpha values. Figure 14.3 shows these two textures and the alpha channel.

Front Front Back

211

Figure 14.3: A “front” texture, its alpha channel, and a “back” texture.

Figure 14.4 shows the application in action. There are four instances of two rectangles. The rectangle

labeled Back is farther from the viewer than the rectangle labeled Front.

* Hast Apphcatisn =0l x|
bask
Frani [Fiou
Transparancy e Trafts P ey
ﬂﬁﬁl"llﬂi!l'g i SO II:"I!"l;

.-
Franl
Traffarancy welh Sioha besl Aremided alshs wlh @ha ast
O DEpn lEEhng Sl Sonpil hasl

Figure 14.4: The testing application.

The upper-left instance shows the two rectangles with alpha blending enabled, depth testing enabled,
and alpha testing disabled. The front rectangle correctly occludes the back rectangle. The upper-right
instance shows the same two rectangles, only this time the depth test is disabled. Because the back
rectangle is drawn second, it obscures the front rectangle. In most cases, this is not correct, so the

depth test is re-enabled for the last two instances.

The lower-left instance shows the effect of the alpha test. Looking back at the upper left, you can see
that the front rectangle is transparent; it blends with the background, but it also obscures the back
rectangle. This is because the depth buffer still gets set for the front rectangle, even though the
transparent regions are fully transparent. Now, in the lower left, the alpha test makes sure the
transparent pixels are never drawn, so they do not set the pixels in the depth buffer. When the back
rectangle is drawn, it passes the depth test everywhere the front rectangle was fully transparent. In this

particular case, the effect is not perfect. Figure 14.5 shows a close-up of the lower-left instance.

212

Figure 14.5: Close-up of alpha-tested region.

The alpha test passes every pixel but pixels that are fully transparent. Because of filtering, some pixels
were semi-transparent. These pixels passed the alpha test and block the back rectangle, causing visual
artifacts. In this case, you could tweak the alpha test reference value and tweak the filter settings to

avoid these artifacts.

Take a look at the code. Because the header file is so similar to the previous examples, I'm going to
skip the code listing (although it's available on the CD, of course). The only important thing to note is
that you now have two texture objects for your front and back textures. Take a look at

Testing@:l Application.cpp, from the \Code\Chapter14 directory on the CD:

#include "TestingApplication.h"

Like the previous chapters, this application continues to use simple single-textured vertices:

#define D3DFVF TEXTUREVERTEX (D3DFVF XYZ | D3DFVF TEX1)

struct TEXTURE VERTEX

{
float x, vy, z;

float u, v;

}i

Initialization and destruction remain mostly unchanged:
CTestingApplication::CTestingApplication ()

{

m pVertexBuffer NULL;
m pFrontTexture = NULL;

m pBackTexture = NULL;

213

CTestingApplication::~CTestingApplication ()
{

DestroyGeometry () ;

}
BOOL CTestingApplication::PostInitialize ()
{
if (FAILED (EasyCreateWindowed (m hWnd, D3DDEVTYPE HAL,
D3DCREATE HARDWARE VERTEXPROCESSING)))

return FALSE;

SetupDevice () ;

if (!CreateGeometry())

return FALSE;

The only real change here is that you load two textures. The front texture is loaded from a .dds file. The

more basic D3DX function uses all the default parameters.
if (FAILED(D3DXCreateTextureFromFile (m pD3DDevice,
"..\\media\\Front.dds",
&m_pFrontTexture)))

return FALSE;

The back texture is loaded with the extended D3DX function. Each of the parameters used is essentially
a default parameter with the exception of the color key parameter. Here, every white pixel is set to full

transparency. (OxFFFFFFFF is the hex value for white.)
if (FAILED (D3DXCreateTextureFromFileEx (m pD3DDevice,
"..\\Media\\Back.bmp",
0, 0, 0, 0, D3DFMT A8R8GS8BS,
D3DPOOL MANAGED, D3DX DEFAULT,
D3DX DEFAULT, OXFFFFFFFF,

NULL, NULL,

214

&m_pBackTexture)))

return FALSE;

return TRUE;

void CTestingApplication::SetupDevice ()
{
D3DXMatrixIdentity (&m ViewMatrix);

m_pD3DDevice->SetTransform(D3DTS VIEW, &m ViewMatrix);

RECT WindowRect;
GetClientRect (m_hWnd, &WindowRect);
D3DXMatrixPerspectiveFovLH (&m ProjectionMatrix,
D3DX PI / 4,
(float) (WindowRect.right - WindowRect.left) /
(float) (WindowRect.bottom - WindowRect.top),
1.0f, 100.0f);
m_pD3DDevice->SetTransform (D3DTS PROJECTION,

&m_ProjectionMatrix);

Here you set all the render states that are not going to change over the life of the device. Alpha blending
is enabled, along with the “standard” blending modes. The reference value for the alpha test is set in the
middle of the range, and the comparison function allows any alpha value that is greater to pass. |

explain this effect more fully later:
m_pD3DDevice->SetRenderState (D3DRS CULLMODE, D3DCULL_NONE) ;

m_pD3DDevice->SetRenderState (D3DRS_LIGHTING, FALSE);

m_pD3DDevice->SetRenderState (D3DRS ALPHABLENDENABLE, TRUE) ;
m_pD3DDevice->SetRenderState (D3DRS SRCBLEND,
D3DBLEND SRCALPHA) ;
m_pD3DDevice->SetRenderState (D3DRS_DESTBLEND,
D3DBLEND INVSRCALPHA) ;

m_pD3DDevice->SetRenderState (D3DRS_ALPHAREF, 0x00000088) ;

215

m_pD3DDevice->SetRenderState (D3DRS_ALPHAFUNC, D3DCMP GREATER) ;

BOOL CTestingApplication: :PreReset ()

{

DestroyGeometry () ;

return TRUE;

BOOL CTestingApplication::PostReset ()

{
SetupDevice () ;

return CreateGeometry () ;

The last several lines are more of the usual. Just make sure that both textures are released:

BOOL CTestingApplication::PreTerminate ()

{
DestroyGeometry () ;

m_pD3DDevice->SetTexture (0, NULL);

if (m_pFrontTexture)

m_pFrontTexture->Release () ;

if (m_pBackTexture)

m_pBackTexture->Release () ;

return TRUE;

Here you create a vertex buffer big enough for two rectangles of four points each. You could be using
one rectangle and just resetting the world transform more often, but in this case it's probably more

efficient to use a little more memory and save the cost of setting the world matrix more often:

BOOL CTestingApplication::CreateGeometry ()

216

if (FAILED (m_ pD3DDevice->CreateVertexBuffer (8 *
sizeof (TEXTURE VERTEX),
D3DUSAGE WRITEONLY,
D3DFVF TEXTUREVERTEX,
D3DPOOL DEFAULT,

&m_pVertexBuffer)))

return FALSE;

TEXTURE VERTEX *pVertices;

if (FAILED (m pVertexBuffer->Lock(0, 8 * sizeof (TEXTURE VERTEX),

(BYTE **)&pVertices,

0)))
{
DestroyGeometry () ;
return FALSE;
}
pVertices[0].x = -1.0f; pVertices[0].y = 1.0f;

pVertices[0].z = 10.0f;
pVertices[l].x = 1.0f; pVertices[l].y = 1.0f;
pVertices[1l].z = 10.0f;

pVertices[2].x = -1.0f; pVertices[2].y = -1.0f;
pVertices[2].z = 10.0f;

pVertices[3].x = 1.0f; pVertices[3].y = -1.0f;
pVertices[3].z = 10.0f;

The back rectangle is set up to be farther along the z axis, as well as a little up and to the left. The

texture coordinates are the same for the two rectangles:
pVertices[4].x = -1.5f; pVertices[4].y = 1.5f;
pVertices[4].z = 11.0f;
pVertices[5].x = 0.5f; pVertices[5].y = 1.5f;

pVertices[5].z = 11.0f;

217

pVertices[6].x = -1.5f; pVertices[6].y = -0.5f;
pVertices[6].z = 11.0f;
pVertices[7].x = 0.5f; pVertices[7].y = -0.5f;

pVertices[7].z = 11.0f;

pVertices[0].u = 0.0f; pVertices[0].v = 0.0f;
pVertices[1l].u = 1.0f; pVertices[l].v = 0.0f;
pVertices[2].u = 0.0f; pVertices[2].v = 1.0f;

pVertices[3].u = 1.0f; pVertices[3].v = 1.0f;

pVertices[4].u = 0.0f; pVertices[4].v = 0.0f;
pVertices[5].u = 1.0f; pVertices[5].v = 0.0f;
pVertices[6].u = 0.0f; pVertices[6].v = 1.0f;
pVertices[7].u = 1.0f; pVertices[7].v = 1.0f;

m pVertexBuffer->Unlock();

m_pD3DDevice->SetStreamSource (0, m pVertexBuffer,

sizeof (TEXTURE VERTEX)) ;

m_pD3DDevice->SetVertexShader (D3DFVF TEXTUREVERTEX) ;

return TRUE;

void CTestingApplication::DestroyGeometry ()

{

if (m_pVertexBuffer)

m_pVertexBuffer->Release () ;

m pVertexBuffer = NULL;

218

Again, you set the clear color in your own PreRender. You might want to experiment with not clearing

the Z buffer or clearing it to a different value just to see the effect.
void CTestingApplication::PreRender ()
{
m_pD3DDevice->Clear (0, NULL,
D3DCLEAR TARGET |
D3DCLEAR ZBUFFER,

D3DCOLOR XRGB (0, 255, 255), 1.0f, 0);

m pD3DDevice->BeginScene () ;

The Render function is where all the real magic happens:

void CTestingApplication: :Render ()

{

This code renders the upper-left instance shown in Figure 14.4. Depth testing is enabled, but alpha
testing is not. If you could see the Z buffer, you'd see the full front rectangle, although much of it is
transparent. This is because the full textured rectangle is rendered, which sets the depth buffer. Then,
the transparent parts of the texture are blended with the background. Because they are fully transparent,
the background shows completely through, but as far as the depth buffer is concerned, those new pixels

are there:

m_pD3DDevice->SetRenderState (D3DRS_ZENABLE, TRUE) ;
D3DXMatrixTranslation (&m WorldMatrix, -2.0f, 2.0f, 0.0f);
m_pD3DDevice->SetTransform(D3DTS _WORLD, &m WorldMatrix);
m_pD3DDevice->SetTexture (0, m pFrontTexture);
m_pD3DDevice->DrawPrimitive (D3DPT_ TRIANGLESTRIP, 0, 2);
m_pD3DDevice->SetTexture (0, m pBackTexture);

m_pD3DDevice->DrawPrimitive (D3DPT_ TRIANGLESTRIP, 4, 2);

Here you turn off depth testing. This is the upper-right instance shown in Figure 14.4. The back
rectangle obscures the front rectangle because it is the last one drawn. With no depth test, it's a “last
pixel wins” operation. In this simple case, you could just render the rectangles in the opposite order to

get the “correct” effect, but with more complex geometry, it’'s not quite that easy:
m _pD3DDevice->SetRenderState (D3DRS_ZENABLE, FALSE);

D3DXMatrixTranslation (&m WorldMatrix, 2.0f, 2.0f, 0.0f);

219

m_pD3DDevice->SetTransform(D3DTS _WORLD, &m WorldMatrix);
m_pD3DDevice->SetTexture (0, m pFrontTexture);
m_pD3DDevice->DrawPrimitive (D3DPT_ TRIANGLESTRIP, 0, 2);
m_pD3DDevice->SetTexture (0, m pBackTexture);

m_pD3DDevice->DrawPrimitive (D3DPT_ TRIANGLESTRIP, 4, 2);

In this third instance (the lower left on Figure 14.4), you see the combined effect of the depth test and
the alpha test. Alpha testing is enabled, and all the transparent areas of the front rectangle are never
drawn. If you rendered the front rectangle and looked at the depth buffer, you'd see something similar to
the color buffer. Only the opaque areas would be in the depth buffer. When the back rectangle is drawn,
it fails the depth test in all the areas where the front rectangle was opaque and passes in the other
areas. The overall effect is correct with the exception of the visual artifacts described earlier. This also
gives you slightly better performance because the device doesn’t compute the blending for the

transparent front pixels.

This approach has yielded the correct effect here, but it is not a general solution for transparent objects.
Many times, the front object has varying levels of transparency and the alpha test is really a binary
operation. In most cases, you still might need to ensure that the front objects are rendered before the

behind objects to get the desired effect of looking through the transparent object:
m_pD3DDevice->SetRenderState (D3DRS_ALPHATESTENABLE, TRUE) ;
m_pD3DDevice->SetRenderState (D3DRS_ZENABLE, TRUE) ;
D3DXMatrixTranslation (&m WorldMatrix, -2.0f, -2.0f, 0.0f);
m_pD3DDevice->SetTransform(D3DTS _WORLD, &m WorldMatrix);
m _pD3DDevice->SetTexture (0, m pFrontTexture);
m_pD3DDevice->DrawPrimitive (D3DPT_ TRIANGLESTRIP, 0, 2);
m_pD3DDevice->SetTexture (0, m pBackTexture);

m_pD3DDevice->DrawPrimitive (D3DPT TRIANGLESTRIP, 4, 2);

This last instance is really just a demonstration of how the texture blending states work and how they
affect alpha blending and alpha testing. Here you create a color using the cosine of the tick count
method to produce a value in the right range. You then use that new color to set the texture factor for
the device. The texture factor is a variable you can change without altering values in the texture or in the
vertex buffer. Setting this value is more efficient than locking a texture or a vertex buffer and changing

the underlying data.

Once the texture factor is set, you change the alpha operation for the first texture stage to add, and you
set the arguments to the texture factor and the texture itself. The overall effect is pretty straightforward.
For the most part, texels in your two textures are either mostly opaque (255) or fully transparent (0). The

nifty cosine function changes the texture factor, which gets added to the alpha values. The fully opaque

220

values are clamped to 255 and remain fully opaque. The transparent values are incremented, becoming

less transparent. As a result, the front rectangle fades in and out.

The only loose end is the alpha test. Half of the time, the back rectangle shows through because you
set the reference value to the middle of the range. Half of the time, it does not. There is no middle
ground. As an exercise, swap the order in which the two rectangles are rendered and disable the alpha
test. The result should be that the two rectangles are nicely blended together as the front rectangle

becomes more or less transparent:
BYTE CurrentColor = (BYTE) (127.0f *

(cos((float)GetTickCount () / 1000.0f) + 1.0));

m_pD3DDevice->SetRenderState (D3DRS_TEXTUREFACTOR,
D3DCOLOR ARGB (CurrentColor, CurrentColor,

CurrentColor, CurrentColor));

m_pD3DDevice->SetTextureStageState (0, D3DTSS ALPHAOP,
D3DTOP_ADD) ;
m_pD3DDevice->SetTextureStageState (0, D3DTSS ALPHAARGI,
D3DTA TEXTURE) ;
m_pD3DDevice->SetTextureStageState (0, D3DTSS ALPHAARG2Z,
D3DTA TFACTOR) ;
D3DXMatrixTranslation (&m WorldMatrix, 2.0f, -2.0f, 0.0f);
m_pD3DDevice->SetTransform(D3DTS _WORLD, &m WorldMatrix);
m_pD3DDevice->SetTexture (0, m pFrontTexture);

m_pD3DDevice->DrawPrimitive (D3DPT_ TRIANGLESTRIP, 0, 2);

Before you draw the back rectangle, set the texture factor back to 0. Because the alpha operation is
additive, this essentially disables the alpha operation, which is what you want when the first two

instances on the next frame are rendered:
m_pD3DDevice->SetRenderState (D3DRS_TEXTUREFACTOR,
D3DCOLOR_ARGB (0, 0, 0, 0));
m_pD3DDevice->SetTexture (0, m pBackTexture);

m_pD3DDevice->DrawPrimitive (D3DPT_ TRIANGLESTRIP, 4, 2);

The last thing you did was turn off the alpha test, ensuring that the test is disabled for the first instances

of the next frame. Remember that all of these settings remain active until they are explicitly changed.

221

Sometimes your rendering will not look right and you will dig through your code trying to find out what's
wrong. It could be that your first frame rendered correctly but set up things badly for every frame

thereafter. It's good to think about how one frame affects another.

m_pD3DDevice->SetRenderState (D3DRS ALPHATESTENABLE, FALSE);

}
In Conclusion...

This is the last chapter to look at the basics. You’ve walked down the pipeline and seen how to create
vertices, how to transform and light them, texture them, turn them into pixels, and finally test those
pixels to determine who stays and who goes. I'm sure there’s a metaphor there, but | leave you to draw

your own conclusions (or would it be render your own opinions?).

Anyway, the next part begins to delve into the wonderful and mysterious world of shaders. Before you
go there, continue the proud tradition of reviewing what you have looked at:

] The depth test is enabled by default and makes sure that overlapping objects are rendered
properly.

" The contents of the depth buffer are a function of the near and far plane of the projection matrix
and the bit depth of the buffer itself. It is possible for the depth buffer to behave improperly if there
is not enough resolution available.

= The W buffer provides an alternative depth-buffering technique that has a more linear distribution
of depth values. This can be advantageous in some cases and detrimental in others.

= You can use the Z bias factor to cheat in cases where the depth buffer may otherwise produce
bad results.

" When clearing the depth buffer, remember that depth buffer values range from 0.0 to 1.0 rather
than a real distance value.

= Alpha blending allows you to render objects with varying degrees of transparency. This is often
very fast on better graphics cards.

= The DirectX texture tool is good for creating textures with transparency information.

= The D3DX extended texture creation functions allow you to set a color key value for simple
transparency.

= Alpha blending is computationally expensive enough that you should probably disable it if you
know you aren’t using it.

= The alpha test is a way to discard pixels that would never get seen. For more complex scenes,
this can be good for performance because alpha blending is a per-pixel operation that can occur
several million times per frame. The alpha test allows you to discard pixels early, saving
computation time.

= Filtered textures can produce artifacts when using the alpha test, although there are ways to work
around that. Either tweak the reference value or the filtering mode. In the worst case, disable the

alpha test.

222

Part IV: Shaders

Chapter List

Chapter 15: Vertex Shaders

Chapter 16: Pixel Shaders

The purpose of Part 3 was to ensure that you understood the basics of 3D rendering. If you skipped it, it

might be worthwhile to go back and skim. | include material that doesn’t usually appear in these types of

books and that might be useful for the techniques later.

The purpose of this part is to describe shaders. This part has only two chapters, but | want to make sure
that you get the fundamentals down before moving on to the cool stuff. You're still laying down
groundwork, but this should be newer material for a lot of people. Here’s a rundown of what | discuss:

. Chapter 15, “Vertex Shaders,” describes what a vertex shader is and how you use them. | don’t

spend a ton of time talking about applications; that’s what the later chapters are for. If you've
already worked with shaders, this material will mostly be review, but | recommend reading it
anyway.

" Chapter 16, “Pixel Shaders,” talks about how to set up pixel shaders and provides some basic

examples. Pixel shaders are a little less understood than vertex shaders, but they are just as
powerful, if not more powerful. This chapter lays the groundwork for the later chapters when you'’ll

do some really interesting stuff.

Chapter 15: Vertex Shaders

@ Download CD Content

Overview

Before | talk about anything, take a look back at Figure 15.1. The diagram of the pipeline shows vertex
data funneling into either the fixed function transform and lighting part of the pipeline or into the

mysterious vertex shader portion of the pipeline. The last several chapters have taught you a lot about
transformation and lighting. It works really well. Why am | switching gears and talking about the box on

the right when the box on the left has been so good to us?

223

Input Vectors Address

Y

-]

S8

E‘ E (]
= [2] 2
= o
s [El Vertex Shader || g
F 1 Processing z
2 £

a B w

[1]

95

L

Cutput Reqgisters

Figure 15.1: Inputs and outputs of a vertex shader.

SIGGRAPH '99 had a panel discussion about the future of graphics hardware. The panelists talked
about where things were heading and took questions from the crowd about desired features. One of the
more interesting and recurring requests was to give the programmer more control over what was
actually going on inside the card. This was coupled with a recognition that some trends seemed to be
moving away from the traditional lighting and rendering approaches and into more nonphotorealistic and
stylistic approaches, such as cartoon rendering and other forms of lighting. The consensus seemed to
be that the hardware was general enough to handle these forms of rendering if only the programmers

could open the card and have a lower level of access to the hardware.

In early 2001, nVidia released the geForce3, which was the first card to offer that level of access when
used with DirectX 8.0 or the appropriate OpenGL extensions. In DirectX lingo, that access was offered
through vertex shaders. Microsoft and several other vendors worked closely to ensure that the drivers
for other cards offered good CPU emulation if the hardware did not support shaders natively. (Although
the fallback CPU emulation is very good, the explanations throughout this chapter are written with
hardware shaders in mind. In most cases, the concepts apply equally well to both.) Finally,
programmers had more control over how vertices were actually processed. You can use that control to
implement all kinds of special effects and new rendering techniques. The rest of the book illustrates cool
techniques. This chapter will concentrate on the basics.

" Why would you use a vertex shader?

= Inputs and outputs of vertex shaders.

" Vertex shader instructions.

" Device/shader interactions.

= Assembling and creating a shader.

= Using your shader.

= Destroying the shader.

" Simple transformations in a vertex shader.

= Writing your first vertex shader application.

What Is a Vertex Shader?

224

In the days before hardware transform and lighting, basic vertex manipulation happened on the CPU,
and the resulting data was passed to the graphics card for rasterization and the rest of the pipeline.
When graphics cards moved to hardware T&L, the task of vertex processing was handed to the
graphics card, freeing up the CPU for other tasks. Within the fixed function portion of the pipeline,
vertices are processed using programs resident in the graphics hardware. Vertices are transformed with
matrices, and the hardware uses the standard lighting equations to solve the lighting equations for each
vertex. Vertex shaders are alternatives to those resident programs. They offer the programmer a way to
directly control how the hardware processes a set of vertices. If programmers choose to use vertex

shaders, they have total control over how the vertices are transformed, lit, and otherwise manipulated.

The word “shader” can be a little confusing. Another way to think about vertex shaders is to think of
them as “vertex manipulators.” In OpenGL, they are called vertex programs. Shaders are short
programs that take vertices and constants as inputs, do some processing, and output the resulting
vertices. One thing to keep in mind is that they process each vertex independently. A vertex shader has

no notion of triangles or other primitives.

Remember that the newest generations of GPUs have more transistors than most CPUs. Vertex
shaders allow programmers like you and me to use all that silicon for our own diabolical purposes. |
mentioned earlier that in most of my programs, | almost never lock the vertex buffers after they are
initially filled. This is partly because the transformation matrices are so powerful, but also because
vertex shaders can handle almost everything else when it comes to manipulating the vertices. Affecting
vertex data on the card helps performance in two ways. It saves the cost of transferring new data from
the CPU to the graphics card, and it also utilizes the best processor for the task. The graphics chip is
extremely tuned for doing vector math. As you will see later, it can do some pretty complex calculations
in one processor cycle. In most cases, this means that the graphics card is much faster at doing vertex

calculations even though its clock speed might be slower than the CPU.

Figure 15.1 shows a conceptual drawing of a vertex shader. | briefly explain the components here and

fill in the blanks as you move on.

Processing in a Shader

Shaders are more flexible due to the fact that all of the data feeds into the programmable ALU
(Arithmetic Logic Unit) instead of traveling down the fixed function pipeline. The ALU is capable of
doing very fast and efficient vector arithmetic. The ALU is almost always better than the CPU for

vector operations.

Vertex Data Registers

225

The vertex shader is run once per vertex, and its principle input is a vertex. | discuss vertex formats
when you get to the point of actually creating a shader, but one thing to remember is that vertex data is
loosely typed. Because you have complete control over the way vertex data is processed, you can
arrange vertex data however you want. For instance, when you sent vertices down the fixed function
pipeline to be lit, you had to put the vertex normal and the vertex color in the right parts of the vertex. If
you didn’t, the hardware would process the wrong data in the wrong way and you’d get garbage. With
vertex shaders, you can send vertex data in whatever format you want, as long as you know how to
handle that format within the shader. Doing this just for fun is not a good idea because it makes your
code very confusing, but some of the techniques use this feature to store data in otherwise unused

portions of the vertices. Each vertex can input up to 16 vectors of 4 float values each.

Constant Registers

Vertex shaders have access to a set of constants that are persistent for read access across instances of
the shaders. The most common usage of the constants is to set transformation matrices or other data
that affects many vertices. Remember that vertex shaders are executed for every vertex. If an operation
is repeated for every vertex, it is usually worthwhile to do that operation once and pass the result as a
constant. For instance, don’t pass several matrices and concatenate them in a shader; concatenate
them once and pass the result. The maximum number of available constants is exposed in the

MaxVertexShaderConst member of the D3DCAPSS structure.

The Address Register

The address register is a special entity that allows you to index into the constants. For instance, you can
set several constants and then store an index in an unused portion of the vertex data. As each vertex is
processed, you set the address register to the index value and the proper constant is used. The address
register can be a very powerful tool, but it is perhaps the most confusing part of shaders. | hold off on a

complete explanation until you work on a technique that demonstrates the address register in action.

The Temporary Registers

Shaders have a series of registers that you can use to hold data during complex calculations. For
instance, a series of instructions might compute the dot product, then multiply the result by a vector, and
add that to another vector. Throughout that operation, these temporary registers can hold values. These

registers do not remain persistent across vertex shader instances.

Vertex Output

The output of the vertex shader is a processed vertex. Unlike the input vertex data, the output is
strongly typed. For instance, the position data must be in transformed homogeneous screen coordinates,
or you don’t see anything on the screen. The only exception to this general rule is when you use the

vertex shaders with pixel shaders. In this case, a vertex shader might set an output color that has

226

nothing to do with the final rendered color but is instead an input to a pixel shader that will use that data
for further processing. In cases where you are not using pixel shaders, the output of the vertex shader is
in a format that is usable by the other stages of the pipeline. Table 15.1 lists the five different types of

output.

Table 15.1: Vertex Shader Output Registers

Output Variable Comments

oPos The output position in transformed screen

coordinates.

oDn Two color outputs (oD1 and oD2). Each is a 4D
vector.
oTn Four texture coordinate outputs (oT0 through

oT3). Each is a 4D vector.

oFog The output fog value. It is treated as one FLOAT
value.

oPts The output point size value. It is treated as one
FLOAT value.

Now that you’ve seen the ins and outs of vertex shaders, take a look at some of what goes into writing a
shader. Many of the instructions and concepts won’t make complete sense until later when you actually

use them, but | lay the groundwork here.

The Shader Code

Shaders are short programs written in a language very much like assembly language. These programs
are compiled on the CPU and passed to the graphics card for actual use. The shader programs must

not exceed 128 instructions, which seems limited but is adequate in most cases. These instructions are
listed in Table 15.2. Each instruction takes one cycle to complete—which is true even for more complex

operations, such as dot product or distance calculations.

Table 15.2: Vertex Shader Instructions

Instruction Format Comments
mov mov Result, Simply moves a value from one register to
Input0 another. This is useful when simply passing

values such as texture coordinates through
the shader and when swizzling components.

(Swizzling is discussed later.)

max max Result, Finds the maximum value of each component

InputO, Inputl and passes each maximum value to the

227

Table 15.2: Vertex Shader Instructions

Instruction Format Comments
result vector.
min min Result, Finds the minimum values of each
Input0, Inputl component and passes those values to the
result vector.
sge sge Result, “Set on greater than or equal.” This
InputO, Inputl instruction sets the component values of the
result vector to 1.0 if each component of
InputO is greater than or equal to that
component of Inputl. Otherwise, it sets that
component to 0.0.
slt slt Result, “Set if less than.” This instruction is similar to
Input0, Inputl sge, except that it checks to see whether the
components of Input0 are less than those
of Inputl.
add add Result, Computes the sum of two vectors for each
InputO, Inputl component of the two input vectors.
sub sub Result, Computes the difference between two
Input0, Inputl vectors (InputO — Inputl) on a per-
component basis. The instruction sub r0,
rl, r2isthe same as using add r0, ril,
-r2. Negating the register is a free operation,
hence the two forms are equivalent
computationally, but there might be
optimization opportunities there.
mul mul Result, Computes the product of two vectors. You
InputO, Inputl may remember that vectors cannot be
directly multiplied. This is a component-wise
multiply. For example, Result.x =
InputO.x * Inputl.x.
rcp rcp Result, Computes the reciprocal of each component

InputO

of a vector. You can use this for division by
computing the reciprocal and then passing

the result to the mul instruction.

228

Table 15.2: Vertex Shader Instructions

Instruction Format Comments
mad mad Result, This instruction can be very useful because it
InputO, Inputl, performs two operations in a single cycle. It
Input?2 multiplies the first two inputs and then adds
the last input.
dp3 dp3 Result, Computes the dot product of two vectors
Input0, Inputl using only the first three components.
dp4 dp4 Result, Computes the dot product of two vectors
InputO, Inputl using all four components.
rsq rsq Result, Computes the reciprocal square root of a
Input0 scalar value. The x component of the input
vector is used unless it is swizzled. The result
is written to all components of the output
vector.
dst dst Result, Computes a distance value from the two
Input0, Inputl inputs. Input0 is expected in the form of
(NA, d*d, d*d, NA), and Inputl is expected
in the form of (NA, 1/d, NA, 1/d). This
instruction can be confusing, so you will look
at it later when you have a real use for it.
lit lit Result, Computes the diffuse and specular lighting
InputO factors. The dot products of the lighting
vectors must be stored in the input vector.
You'll take a closer look at this when you
implement your own lighting in the shader.
expp expp Result, Computes 2 to the power of Input0.w with
Input0 partial precision. The result is stored in
Result.x, and the other components store
data useful in computing a more accurate
result.
logp logp Result, Similar to expp, this instruction computes the

InputO

log base 2 of Input0.w and provides

additional data in the other components.

229

The fact that each of these instructions executes in one cycle means that the speed of the shader is
directly proportional to the number of instructions used. Whenever possible, look for opportunities to

reduce instruction count. Instructions such as mad can be especially useful.

There are also instruction macros defined for vertex shaders. These macros perform common tasks as
sets of basic instructions. The matrix multiplication macros can be useful for common tasks. Also, they
are often optimized in software if the shader falls back to software processing. The other macros might
not be as useful because they concentrate on higher precision, which you do not usually need. The
downside of these macros is that they could obscure the real number of instructions in the shader. For
example, the m4x4 macro uses four instructions. If you decide to take advantage of the macros,
remember to pay careful attention to the instruction count and remember that macros usually use more

than one instruction. Table 15.3 lists the macros.

Table 15.3: Vertex Shader Macros

Macro Format Comments
m3x2 m3x2 Result, Vector0, Multiplies the input vector by a
MatrixO 3x2 matrix.
m3x3 m3x3 Result, VectorO, Multiplies the input vector by a
Matrix0 3x3 matrix.
m3x4 m3x4 Result, Vector0, Multiplies the input vector by a
Matrix0 3x4 matrix.
m4x3 m4x3 Result, Vector(, Multiplies the input vector by a
Matrix0 4x3 matrix.
méx4 m4x4 Result, Vector0, Multiplies the input vector by a
Matrix0 4x4 matrix.
exp exp Result, Input The full precision equivalent to
expp.
log log Result, Input The full precision equivalent to
logp.
frc frc Result, Input Computes the fractional
portion of the x and y
components.

Swizzling and Write Masks

As | mentioned earlier, some free operations can be written into vertex shaders. One of the free
operations is negation. Inputs to instructions can be negated with the minus sign. The other free
operation is swizzling. Swizzling lets you reorder the individual components of the input vectors and

duplicate components. For example, constants are stored as a vector of four values. Let’s say you are

230

writing a shader that multiplies values by powers of ten (1, 10, 100, and 1,000). You can store all four
values in a single constant vector and then use them individually with swizzling. The following shader

code assumes that the constant c1 is set to (1, 10, 100, 1000):

mul rl, r0, cl.y ; All components of r0 are multiplied by 10.

mul rl, r0, cl.xxzz ; The first two components are multiplied by one
; and the last two are multiplied by 100.

mul rl, r0, cl.zzxx ; The first two components are multiplied by 100
; and the last two are multiplied by one.

mul rl, r0, -cl.w ; All components are multiplied by -1000.

Careful use of swizzling can sometimes save many instructions. Swizzling also lets you use constants
more effectively. If you have data that is not vector based, save multiple values in a single vector. This
applies equally to constants and vertex data. For example, you can save several array indices in a

single vertex vector and use swizzling to extract each value separately inside of the shader.

The other useful tool is write masking. The format here is similar to swizzling. If you only want the

shader to write to specific components, specify those components as follows:
mul rl.x, r0, cl.y ; Only the x component is written to.

mul rl.xw, r0, cl.xxzz ; Only x and w are written to.

You are rapidly reaching the point where shader concepts are best explained in context. Next, you'll
look at how shaders are actually implemented. You'll continue looking at some of the basics once you

begin writing some simple shaders.

Shader Implementation

Before creating the shader, you need to know whether your hardware can handle it. To create a shader,
you need a declaration and the code for the shader itself. Like a function declaration, the shader
declaration defines the format of the inputs to the shader. Once you have a declaration, you need to
compile the shader. Finally, you ask the device to actually create the shader. This produces a shader

handle, which can be passed to the SetVertexShader function. Let’'s walk through each step in detail.

Shaders and the Device

The first thing you should check is what shader version the hardware supports. This book is written with
the assumption that your hardware supports at least version 1.1. You can check this with a call to your
good friend GetDeviceCaps. Then check the VertexShadervVersion member of the D3DCAPSS

structure:
m_pD3D->GetDeviceCaps (D3DADAPTER DEFAULT,

D3DDEVTYPE HAL, &Caps);

231

if (Caps.VertexShaderVersion == D3DVS VERSION(1,1))

If you specify a HAL device, it gives you the capabilities of the hardware. If the hardware doesn’t

support vertex shaders, you can create the device with software vertex processing.

Creating the Declaration

The declaration serves much of the same purpose as the FVF in earlier samples. It lets the shader
know what it's dealing with and where it's coming from. Physically, the declaration is an array of DWORDs
created with a series of macros. There are nine macros in all, but | am going to concentrate most

heavily on three of them.

The first macro defines the stream that will supply the data. In all the previous examples involving the
fixed function pipeline, you used stream 0. However, vertex shaders can receive data from multiple
streams. This creates opportunities to store different data in different streams and mix and match as the
situations change. Setting different stream sources is not as costly as changing the contents of the

buffers themselves. This macro takes the following form:

D3DVSD STREAM (StreamNumber)
You can find the maximum number of streams in the D3DCAPSS8 structure.

The second macro of interest defines the input registers for each element of the vertex. These registers

are analogous to the FVF macros defined several chapters ago. This macro takes the following form:

D3DVSD REG (Register, Type)

Within the vertex shader code, the registers are defined as v0 through v15. Table 15.4 defines the

possible register parameters and their vertex shader reference.

Table 15.4: Vertex Registers

Parameter Register Name
D3DVSDE_POSITION v0
D3DVSDE BLENDWEIGHT vl
D3DVSDE_BLENDINDICES v2
D3DVSDE NORMAL v3
D3DVSDE_PSIZE va
D3DVSDE DIFFUSE v5
D3DVSDE_SPECULAR v6
D3DVSDE TEXCOORDO v7

232

Table 15.4: Vertex Registers

Parameter Register Name
D3DVSDE TEXCOORD1 v8
D3DVSDE_TEXCOORD2 v9
D3DVSDE_TEXCOORD3 v10
D3DVSDE_TEXCOORD4 v1ll
D3DVSDE_TEXCOORDS5 v12
D3DVSDE_TEXCOORD6 v13
D3DVSDE_TEXCOORD7 v1ld4

You must give each vertex register a valid type. Table 15.5 shows the valid types.

Table 15.5: Register Types

Type Comments

D3DVSDT FLOAT4 This is the default format for the vector types.

D3DVSDT_ FLOAT3 This is still a 4D vector, but the last component is set to 1.0.
D3DVSDT FLOAT2 A 4D vector, but the last components are set to 0.0 and 1.0.
D3DVSDT_ FLOAT1 Here the vector takes the form of (value, 0.0, 0.0, 1.0).
D3DVSDT D3DCOLOR This is the four-byte D3D color format.

D3DVSDT UBYTEA4 This data format is four bytes.

The final macro defines the end of the declaration. It simply takes the following form:

D3DVSD_END ()

Now that you’ve defined the macros, let's make more sense of this by looking at a few actual

declarations:

DWORD Chapter9Declaration[] =

{
D3DVSD STREAM(O),
D3DVSD REG (D3DVSDE POSITION, D3DVSDT FLOAT3),
D3DVSD REG (D3DVSDE DIFFUSE, D3DVSDT D3DCOLCR),
D3DVSD END ()

b

233

If you had been working with vertex shaders back in Chapter 9, the previous declaration would have
been the declaration that matched your simple colored vertices. The following would have been the

declaration used in Chapter 12:

DWORD Chapterl2Declaration[] =

{
D3DVSD_ STREAM (0),
D3DVSD REG (D3DVSDE POSITION, D3DVSDT FLOAT3),
D3DVSD REG (D3DVSDE TEXCOORDO, D3DVSDT FLOAT2),
D3DVSD_END ()

}i

Finally, here is a declaration that uses multiple streams:

DWORD MultiStreamDeclaration[] =

D3DVSD STREAM(0),
D3DVSD REG (D3DVSDE POSITION, D3DVSDT FLOAT3),
D3DVSD REG (D3DVSDE DIFFUSE, D3DVSDT D3DCOLOR),
D3DVSD STREAM (1),
D3DVSD REG (D3DVSDE TEXCOORDO, D3DVSDT FLOAT2),
D3DVSD END ()
i
You would use this declaration to draw position and color data from one stream and texture coordinates

from the other. Of course, you would need to set both stream sources to valid buffers. Both streams

would feed the shader, as shown in Figure 15.2.

Veriex Shader

Stream 0

Poaition Data v
Color Data _|
v
Straam 1
T

Taxturs Coordinate Data

Figure 15.2: Multiple streams into a single shader.

Assembling the Shader

234

Once the declaration is created, it's time to actually assemble the shader. This is a matter of reading the

assembly code from a file or buffer and compiling that into a usable binary form. The easiest way to do

this is to use the D3DX library. The two useful functions are D3DXAssembleShader and

D3DXAssembleShaderFromFile

HRESULT D3DXAssembleShader (LPCVOID pShaderCode, UINT ShaderCodeLength,

DWORD Flags, LPD3DXBUFFER *ppConstants,
LPD3DXBUFFER *ppCompiledShader,

LPD3DXBUFFER *ppErrors) ;

HRESULT D3DXAssembleShaderFromFile (LPCSTR pShaderFileName,

DWORD Flags,
LPD3DXBUFFER *ppConstants,
LPD3DXBUFFER *ppCompiledShader,

LPD3DXBUFFER *ppErrors) ;

As you can see, the two functions are very similar. The only difference is that one function gets the

shader code as input and the other reads the shader code from a file. For the sake of explanation, |

describe D3DXAssembleShader. The parameters are listed in Table 15.6.

Table 15.6: D3DXAssembleShader Parameters

Parameter Comments

pShaderCode This is a pointer to the source code for the shader. The shader code is
a set of the instructions described earlier.

ShaderCodelLength This is the byte length of the source code buffer.

Flags This function usually validates the shader code against the capabilities
of the device. Flags can disable this validation or include debugging
information in the compiled shader, but in most cases, this parameter
should be 0.

ppConstants This is a pointer to a buffer that contains constant data. In most cases,
you’ll be using a more dynamic way to set constant data, as described
later in this chapter. You'll be setting this parameter to NULL.

ppCompiledShader This is a pointer filled with the compiled shader if this function is
successful. This is the pointer that gets passed to the next step in
shader creation.

ppErrors This is a buffer filled with text error messages (if any).

235

Creating the Shader

If D3DXAssembleShader is successful, the ppCompiledShader parameter contains the compiled
shader code. The final step is to pass the compiled shader to the device and create a handle that can

be passed to SetvertexShader. You do this with a call to CreatevVertexShader:
HRESULT IDirect3DDevice8::CreateVertexShader (

CONST DWORD *pDeclaration,

CONST DWORD *pCompiledShader,

DWORD *pShaderHandle, DWORD Usage) ;

This function takes a pointer to the shader declaration and a pointer to the compiled shader data, and

creates a shader handle. You can use the Usage parameter to create a shader processed in software.

Using the Shader

Now that you have a shader handle, you can use that handle to set the vertex shader when needed. To
do this, call SetvertexShader, but use the shader handle instead of an FVF. Just as the FVF told the
hardware how to process vertices in the fixed function pipeline, the shader handle tells the hardware

how to process vertices in a shader.

In most cases, you also need to set shader constants. You should set constants before the actual
rendering calls they are meant to affect. The values remain in effect until explicitly changed because the
shader cannot change them. You set vertex shader constants by calling the appropriately named

SetVertexShaderConstant
HRESULT IDirect3DDevice8::SetVertexShaderConstant (DWORD Register,
CONST void *pConstantData,

DWORD ConstantCount) ;

The Register parameter specifies which constant to set, and the buffer contains the actual data.
Remember that constants are each vectors of four FLOAT values. The final ConstantCount parameter
specifies the number of vectors. If the constant count is greater than 1, subsequent constants are set to
the subsequent vectors. For instance, you could use the following call to set constants c0, c1, c2, and

c3:

m_pD3DDevice->SetVertexShaderContstant (0, &SomeData, 4);

If you're not careful, some calls to SetvVertexShaderConstant can overwrite constants set in

previous calls. Keep a close eye on when constants are set and whether any calls overlap.

Setting Constants

236

If you are familiar with vertex shaders already, you may have noticed that | omitted the fact that you
can set constants in the vertex shader declaration and in the vertex shader code itself. Personally, |
like limiting the mechanisms | use to affect my code unless there is some performance advantage.
Placing constant definitions in three different places might be confusing, especially if someone else
is trying to follow along. In most cases, some constants need to change fairly frequently, but there is
only the slightest overhead associated with setting the more static constants with
SetVertexShaderConstant. This book does not use the declarations or code to set constants,

but the option is available to you if you choose to do it that way.

After the shader is set and the constants are set, rendering primitives is exactly the same as in previous
chapters. Soon, | talk about the basic functionality you need to add to most shaders to make them work,

but first let’s see how to get rid of a shader when it is no longer useful.

Destroying the Shader

When you are done with a shader (typically at the end of a program), all that you need to do is delete it:

HRESULT IDirect3DDevice8::DeleteVertexShader (DWORD ShaderHandle) ;

This call deletes the shader, frees the resources that the shader was using, and allows you to move on

with your life.

Using Shaders with Computed Geometry

In some of the samples, you created vertex buffers of computed geometry and filled them with vertices
with a set vertex format (FVF). You can use these vertices with a vertex shader if the format described
by the FVF matches the format described by the shader declaration. Just set the vertex shader and

render the vertex buffer using DrawPrimitive or DrawIndexedPrimitive.

Using Shaders with Meshes

If the mesh is not saved in the format expected by the shader, you might need to change the vertex

format before the shader can process the mesh. You do this with CloneMesh:

HRESULT ID3DXMesh: :CloneMesh (DWORD Options, CONST DWORD *pDeclaration,
LPDIRECT3DDEVICES pD3DDevice,

LPD3DXMESH *ppNewMesh) ;

This function creates a new mesh based on the supplied options and declaration. Usually, you call this
function, get the resulting mesh, and then release the first mesh. Once the new mesh is created, you
should not call DrawSubset because that function sets the vertex shader internally. Instead, draw the

primitives yourself using the index and vertex buffers owned by the mesh object. You'll see how to do

this in Chapter 17.

237

The Basic Shader

| started out by talking about shaders at the lowest level, describing each individual instruction. Then |
talked about shaders at the highest level, talking about how they are created, used, and destroyed. Now
| pull it all together and talk about the shader itself. You'll go over some basic operations that nearly

every shader does. This will provide the foundation for the more complex shaders you'll see later.

Remember that when you turned your back on the fixed function pipeline, you turned your back on
everything it had to offer. Transformations, lighting—everything | have talked about, everything you
have worked for—was provided to you. Now you must fend for yourself. You can start with

transformations.

Transformations in the Basic Shader

Chapter 9 explained how transformations mapped 3D data onto the 2D screen. The device used the
projection, view, and world matrices to convert vertex data to homogeneous screen coordinates. Now

you have to do it yourself. The first thing to do is concatenate the matrices:
D3DXMATRIX TransformMatrix = WorldMatrix * ViewMatrix *

ProjectionMatrix;

Although the matrix includes all the transformation data, it is still not ready to use. It is much more useful

to take the transpose of the matrix (see Chapter 3). The D3DX library comes in handy once again:

D3DXMatrixTranspose (&TransposedMatrix, &TransformMatrix);

The transposed matrix is ready to pass into the shader as a set of constants. You will set c0 through c3

with the rows of the matrix:

m_pD3DDevice->SetVertexShaderConstant (0, &TransposedMatrix, 4);

Once the constants are set, the shader can use them to process the vertices. It now makes sense to
look at the code for the vertex shader. You can find each component of the transformed vertex by
computing the dot product of the vertex position and each row of the transposed matrix. This was
described in Chapter 3. In this case, the four constants are the four rows of the transposed matrix. In
Chapter 3, you learned that you could transform a vector by taking the dot product of the vector and the
four row vectors. That is exactly what yields the result here. The result is written to the output register

oPos. Figure 15.3 reworks the equations from Chapter 3 to show how the constants are set and used.

238

1 0 0 0 O A]

a1 0 0 o 1 0 20
M = 1T =

a o0 1 0 o 0 1 20

m 20 30 1 6 |
cD=(1,0,0,10) oPosx=v0ecO
c1=(0,1,0,20) oPosy =vDeci
c2=(0,0,1, 30) oFos.z =v0ec2
c3=(0,001) oFosw=vDec3

Figure 15.3: Transformations based on the transposed transformation matrix.

The code follows:
vs.1l.1

dp4 oPos.x, v0, cO
dp4 oPos.y, v0, cl
dp4 oPos.z, v0, c2

dp4 oPos.w, v0, c3

There are a bunch of things happening here. The first line identifies the vertex shader version as 1.1.
After that, the input vertex is dotted with each of the four rows of the transposed matrix, and the results
of each dot product are written to the components of the output register oPos. Most samples set a
temporary register and then copy the temporary register to oPos. This isn’t particularly useful, and it

"costs" an extra instruction count.

Setting Other Vertex Data

In later chapters, you will be processing colors and texture coordinates in interesting ways, for now,

you'll just pass the information along. You do this with the mov instruction:

mov oDO, v5

This line passes the vertex color through the shader unchanged. Even though you don’t process the
color in any way, you still need to copy the data from the input register to the output register. | revisit the

complete shader when | talk about the sample application. First, | discuss performance issues.

Performance Issues

Remember that a vertex shader is run once for every vertex. Therefore, anything that affects many
vertices should probably be done once and passed in as a constant. In the basic shader example, you
could have concatenated and transposed the matrices inside the shader, but that would have meant
repeating the operation many times. Also, remember that you can set constants, render some primitives,

set the constants again, and render more primitives. Just remember that there is a cost associated with

239

certain operations. Setting constants isn’t that costly, but setting the vertex shader can be. If you are

using several vertex shaders, avoid switching between shaders unnecessarily.

In the shader code itself, remember that each instruction takes one cycle of the graphics chip. It's easy
to see that the longer the shader, the more time it takes to execute that shader. If you can shave one
instruction off a shader, that can actually translate into many saved cycles over the course of the
application. Always look for shortcuts within the shader code.

The Code

The code for this chapter is simple and concentrates mostly on setting up a basic vertex shader. You
will revisit the application from Chapter 9, only this time the simple transformations will happen in a
shader. This should provide the foundation you’ll need for the real techniques in the coming chapters.
Figure 15.4 shows a screenshot of the application. The application from Chapter 9 showed four different
viewports, but this application uses only one of them; from a shader perspective, each one was the

same.

Figure 15.4: A very simple shader application.

As always, you'll start with the header file, BasicShader® Application.h:

class CBasicVertexShaderApplication : public CHostApplication
{
public:

CBasicVertexShaderApplication() ;

virtual ~CBasicVertexShaderApplication();

This is the only new function in the application. This function is called every time the device is created or

reset. The other functions are duplicates of those from Chapter 9:

HRESULT CreateShader () ;

240

BOOL FillVertexBuffer():;
BOOL CreateVertexBuffer():;

void DestroyVertexBuffer () ;

virtual BOOL PostInitialize();
virtual BOOL PreTerminate();
virtual BOOL PreReset();
virtual BOOL PostReset();

virtual void Render () ;

LPDIRECT3DVERTEXBUFFER8 m pVertexBuffer;

D3DXMATRIX m WorldMatrix;
D3DXMATRIX m ViewMatrix;

D3DXMATRIX m ProjectionMatrix;

The shader handle below identifies the shader when it is created, set, and destroyed.

DWORD m_ShaderHandle;
i
Following is the code for the implementation of the new class. This is a revamped version of the code

from Chapter 9, so | only discuss the new stuff. If you haven’t read the comments from Chapter 9, you

might want to do so:

#include "BasicVertexShaderApplication.h"

You still create an FVF even though it's not being passed to SetvertexShader. The FVF is still used

when creating the vertex buffer:

#define D3DFVF SIMPLEVERTEX (D3DFVF XYZ | D3DFVF DIFFUSE)

struct SIMPLE VERTEX
{
float x, vy, z;
DWORD color;
i

#define NUM VERTICES 20

241

CBasicVertexShaderApplication: :CBasicVertexShaderApplication ()
{

m pVertexBuffer = NULL;

CBasicVertexShaderApplication: :~CBasicVertexShaderApplication ()
{

DestroyVertexBuffer();

BOOL CBasicVertexShaderApplication::PostInitialize()
{
D3DCAPS8 Caps;
m_pD3D->GetDeviceCaps (D3DADAPTER DEFAULT, D3DDEVTYPE HAL,

&Caps) ;

The above code decides whether to create the device with hardware vertex shading or software vertex
shading. When you call the GetDeviceCaps method of the D3D object and specify the HAL device,

the device capabilities returned are the hardware-specific capabilities. If they do not include support for
vertex shaders, create the device with software vertex processing. Next, you assume that the hardware

and driver at least support vertex shaders in software:

if (Caps.VertexShaderVersion == D3DVS VERSION(1,1))
if (FAILED (EasyCreateWindowed (m hWnd, D3DDEVTYPE HAL,
D3DCREATE_HARDWARE_VERTEXPROCESSING)))

return FALSE;

else

if (FAILED (EasyCreateWindowed (m_hWnd, D3DDEVTYPE HAL,
D3DCREATE_SOFTWARE_VERTEXPROCESSING)))

return FALSE;

242

}

m_pD3DDevice->SetRenderState (D3DRS_LIGHTING, FALSE);

D3DXMatrixIdentity (&m ViewMatrix);

RECT WindowRect;
GetClientRect (m_hWnd, &WindowRect);
D3DXMatrixPerspectiveFovLH (&m ProjectionMatrix,
D3DX PI / 4,
(float) (WindowRect.right - WindowRect.left) /
(float) (WindowRect.bottom - WindowRect.top),
1.0f, 100.0f%f);
Create the shader. If this fails, there’s no reason to go on. At this point, the only real reason for failing is
that the device has no support for shaders. If so, you might need to create a REF device instead:
if (FAILED (CreateShader()))
return FALSE;

return CreateVertexBuffer ()

BOOL CBasicVertexShaderApplication: :PreReset ()
{

DestroyVertexBuffer();

In addition to destroying the vertices, you should also delete the vertex shader and free up its
resources:

m_pD3DDevice->DeleteVertexShader (m_ShaderHandle) ;

return TRUE;

BOOL CBasicVertexShaderApplication::PostReset ()

{

Re-create the shader if the device has been reset:

243

if (FAILED (CreateShader()))
return FALSE;

return CreateVertexBuffer():;

BOOL CBasicVertexShaderApplication::CreateVertexBuffer ()
{
if (FAILED (m_pD3DDevice->CreateVertexBuffer (NUM VERTICES *

sizeof (SIMPLE VERTEX),
D3DUSAGE WRITEONLY,
D3DFVEF SIMPLEVERTEX,
D3DPOOL_ DEFAULT,
&m_pVertexBuffer)))

return FALSE;

m_pD3DDevice->SetStreamSource (0, m pVertexBuffer,

sizeof (SIMPLE VERTEX)) ;

FillVertexBuffer();

In Chapter 9 you set the vertex shader here because it was the FVF. Now you’re using shaders, so you

set the vertex shader after the shader is created:

return TRUE;

void CBasicVertexShaderApplication::DestroyVertexBuffer ()
{

if (m _pVertexBuffer)

m pVertexBuffer->Release();

m pVertexBuffer = NULL;

244

void CBasicVertexShaderApplication: :Render ()
{

D3DXMATRIX RotationMatrixl;

D3DXMATRIX RotationMatrix2;

D3DXMATRIX TranslationMatrix;

D3DXMATRIX ScalingMatrix;

D3DXMatrixRotationZ (&RotationMatrixl,
(float)GetTickCount () / 1000.0f);
D3DXMatrixRotationZ (&RotationMatrix?2,

- (float)GetTickCount () / 1000.0f);

In Chapter 9, you used four different viewports to show four different types of transformations. In this
chapter, you show only one transformation. Notice that here you set the world matrix, but again, you

don’t call SetTransform. There’s no reason to:
D3DXMatrixTranslation (&TranslationMatrix, 3.0f, 0.0f, 0.0f);

D3DXMatrixScaling (&ScalingMatrix, 1.0f, 0.5f, 1.0f);

m WorldMatrix = ScalingMatrix * RotationMatrix2 *
TranslationMatrix * RotationMatrixl;
Next, you multiply the three matrices to form the one transform matrix that is sent to the shader.
However, the final screen position of the vertex is actually computed using the transpose of the matrix.

Because the transpose is the same for all vertices, you do the transpose operation once and pass the

result to the shader, setting the first four constant registers to the four rows of the transposed matrix.
D3DXMATRIX ShaderMatrix = m WorldMatrix * m ViewMatrix *

m_ProjectionMatrix;

D3DXMatrixTranspose (&ShaderMatrix, &ShaderMatrix);

m_pD3DDevice->SetVertexShaderConstant (0, &ShaderMatrix, 4);

Once the matrix is passed to the shader, you are ready to render:

m_pD3DDevice->DrawPrimitive (D3DPT POINTLIST, 0, NUM VERTICES)

245

BOOL CBasicVertexShaderApplication: :PreTerminate ()

{

DestroyVertexBuffer();

m_pD3DDevice->DeleteVertexShader (m_ShaderHandle) ;

return TRUE;

BOOL CBasicVertexShaderApplication::FillVertexBuffer ()

{
if (!m pVertexBuffer)

return FALSE;

SIMPLE VERTEX *pVertices;

if (FAILED (m pVertexBuffer->Lock (0,

NUM VERTICES * sizeof (SIMPLE VERTEX),

(BYTE **)g&pVertices,

0)))

DestroyVertexBuffer();

return FALSE;

for (long Index = 0; Index < NUM VERTICES; Index++)

float Angle = 2.0f * D3DX PI *

(float) Index / NUM VERTICES;

246

pVertices[Index] .x cos (Angle) ;
pVertices[Index].y = sin(Angle);

pVertices[Index].z = 10.0f;

pVertices[Index].color = Oxffffffff;

m_pVertexBuffer->Unlock();

return TRUE;

HRESULT CBasicVertexShaderApplication::CreateShader ()

{

Because this shader is so simple, it is created in code rather than in a file. The new line characters at
the end of each line are for the shader assembler. The shader computes the dot products of the input
vector and each row of the transposed matrix and places the results into the components of the output

position. It also copies the diffuse color to the output color unchanged. This is the simplest shader that

produces transformed colored vertices. Shaders in later chapters are much more involved:
const char BasicShader[] =
"vs.1l.1 \n"
"dp4 oPos.x, v0, cO \n"
"dp4 oPos.y, v0, cl \n"
"dp4 oPos.z, v0, c2 \n"
"dp4 oPos.w, v0, c3 \n"

"mov oDO, v5 \n";

This is the shader declaration. It specifies that the vertices used by the shader should have a position
vector and a color. Also, these vertices will be taken from stream 0. If there is a mismatch between the
shader declaration and the vertex format, the shader will either produce bad data or crash. Neither is a

desired result:

DWORD Declaration[] =

{

D3DVSD STREAM (0),

247

D3DVSD REG (D3DVSDE POSITION, D3DVSDT FLOAT3),
D3DVSD REG (D3DVSDE DIFFUSE, D3DVSDT D3DCOLOR) ,
D3DVSD_END ()

}i

ID3DXBuffer* pShaderBuffer;

ID3DXBuffer* pShaderErrors;

First, you assemble the shader using the character buffer that contains the shader code. This
application has fairly minimal error checking, but in real usage, you might want to check the error buffer

if the assembler fails. The result is a compiled shader, which still needs to be instantiated on the device:
if (FAILED (D3DXAssembleShader (BasicShader,
sizeof (BasicShader) - 1,
0, NULL, é&pShaderBuffer, &pShaderErrors)))

return E FATL;

Creating the vertex shader is basically creating an instance of the vertex shader on the device that can
be used by the device. You tell the device what inputs the shader expects, and you give it the compiled
shader code. The result is a shader handle, which is used as an identifier when you need to set or

destroy the shader.
if (FAILED (m_ pD3DDevice->CreateVertexShader (Declaration,
(DWORD *)pShaderBuffer->GetBufferPointer (),
&m_ShaderHandle, 0)))

return E FATL;

The final thing you do is release the buffers that were used during the creation process. After the actual

shader is created, there is no more need for these buffers:

pShaderBuffer->Release();

The last thing you do is set the vertex shader. This application is simple, so you can set the vertex
shader here and forget about it. In other applications that use more than one shader, you might need to

be more careful about when each shader is active.

return m pD3DDevice->SetVertexShader (m_ ShaderHandle) ;

}
In Conclusion...

This chapter really only touches on the basics of shaders. It's important to lay down the basic concepts

such as instructions and different register types, but it’s difficult to see just how powerful they can be

248

until you look at the techniques in later chapters. If you don’t see the power of shaders yet, don’t worry:

You'll have plenty of time for that. For now, here are the important things to remember:

Shaders take data from input registers and write to output registers. Along the way, they may use
constants and temporary registers to actually do the computations.

You can use the Address register to index into the constant registers.

Shaders are limited to 128 instructions.

The basic shader instructions handle elementary vector manipulation. You can perform higher-
order computations with groups of instructions.

Vertex shader macros provide some shortcuts to commonly used functionality, but be careful not
to exceed the instruction count.

Swizzling, negation, and write masking are “free” operations that can be extremely useful.

Performance depends on instruction count. Fewer instructions equals better performance.

It's a good idea to make sure the device supports shaders before creating the device. If the device
does not support them with hardware vertex processing, it should support them with software
vertex processing.

The shader declaration specifies the input format of the vertices, much like the FVF. The vertex
format must match the declaration or the shader will not work.

Unlike the fixed function pipeline, vertex shaders can take advantage of data from multiple
streams. This can allow you to mix and match different streams containing different vertex
elements.

Shaders must be assembled and then created on the device.

Rendering primitives with vertex shaders is the same as in previous chapters, assuming the vertex
formats match the declaration. Meshes might require changing the vertex format.

The easiest way for a shader to compute the transformation from object space to camera space is
with the transpose of the transformation matrix. The simple shader transformation code shown in
this chapter is repeated many times in later chapters.

Just one more time because it’'s important: Performance depends on instruction count. Fewer

instructions equals better performance.

Chapter 16: Pixel Shaders

® Download CD Content

Overview

Pixel shaders are analogous to vertex shaders, but they operate on pixels instead of vertices. After

vertices are transformed, the triangles are rasterized into pixels that are drawn to the back buffer.

Previous chapters discussed how vertex colors and texture operations affect the colors of the final

output. In this chapter, | introduce the concepts behind pixel shaders. These ideas are fleshed out more

in the actual technique chapters, but this chapter serves as an introduction to the following basic pixel

shader concepts:

249

. Different pixel shader versions.

= Inputs and outputs of a pixel shader.

= Dependent texture reads.

= Pixel shader instructions and instruction pairing.
" Pixel shader modifiers.

" Pixel shader limitations and caveats.

= Determining pixel shader support.

= Assembling and creating pixel shaders.

= A simple pixel shader application.

What Is a Pixel Shader?

In previous chapters, you saw that different color operations influence the way that texture and vertex
colors are blended when triangles are rasterized. Texture stage color operations give the programmer a
decent amount of control over blending, but they don’t provide much in the way of flexibility. Pixel
shaders, like vertex shaders, allow a much finer grain of control over how the device deals with data. In
the case of pixel shaders, the data in question is a pixel. The shader operates on every pixel that will be
rendered to the screen. Note that this is not every pixel of the screen, but rather every pixel of the
rendered primitive. Figure 16.1 shows a different view of the later stages of Figure 5.1. As you can see,
the shader influences the coloring of a given primitive, but the resulting pixel must still pass the alpha,

depth, and stencil tests before it becomes a pixel on the screen.

[Goometry Pipeting |

I

Texture Vertex
Lookups Caolors
Pl T i
F:!'IF"."I'-.F | Eiwal |'_'||_' arabions]
[Fimal Pzl Color]

;

[Flf"’ I Textura Elending

[}

| Rastenzabon I

Figure 16.1: A pixel shader’s place in the pipeline.

The point is that the pixel shader operates on every pixel of the rendered primitive, not necessarily
every pixel of the output screen or window. This means that the pixel shader influences how a given
triangle or object looks. It takes the place of texture blending states and offers a finer level of control
over the transparency and color of whatever object is being drawn. As you'll see in later chapters, this

has implications in terms of lighting, shadows, and many other color operations.

Perhaps one of the biggest advantages of pixel shaders is that they simplify the representation of

complex texture-blending operations. Texture stage states require you to set texture operations,

250

arguments, blending factors, and several other states. These states remain in effect until they are
explicitly changed. The result is that the syntax is sometimes clumsy, and it sometimes is difficult to
keep track of all the settings. Pixel shaders replace the calls to SetTextureStageState with a series
of relatively straightforward arithmetic instructions with clearly defined arguments. Once you become

familiar with pixel shaders, you will find them quite useful.

Pixel Shader Versions

The pixel shader specification is changing more rapidly and significantly than the vertex shader
specification. There is a version 1.0, but you should use 1.1 instead. Currently, almost all pixel shader
hardware supports version 1.1, but there are hardware implementations for versions 1.2, 1.3, and 1.4.
Later versions extend the functionality in many ways, but | chose to limit the techniques in later chapters
to version 1.1. In this chapter, | explain the features of all the versions. | note any features that are
limited to later versions. Unless | note otherwise, you can assume general comments apply to all

versions.

Pixel Shaders versus Vertex Shaders

Version 1.1 pixel shaders are fairly limited compared to version 1.1 vertex shaders. Later versions
include more advanced support for texture reads and more flexible comparison functions. Pixel

shaders are gradually moving toward the flexibility found in vertex shaders.

The Inputs, Outputs, and Operation of a Pixel Shader

As with a vertex shader, pixel shader operations depend on a set of inputs, a set of instructions, and

registers to hold the final output. Figure 16.2 shows an architectural depiction of a pixel shader.

Color Riegisters
[voibifuse) || viiSpecutar) |
Y
[o] [<0]
o caff
= [&]]} Pixel Shader | [=] 2
Fil =
g [w] Processing &
:
. .
Yersion 1.1 1.3
Tesdurs Addressng L i
[o]lr][m]
Tesures [T Tamng Remsters

Varsion 1.4
Teatura Addressing

Figure 16.2: Pixel shader architecture.

251

Following is a breakdown of each component of a pixel shader. | give a brief overview here and then fill

in the gaps as the chapter progresses.

Color Registers

The color registers v0 and v1 are the most straightforward inputs. They are four component color
values that correspond to the oD0 and oD1 output registers of the vertex shader. These can be useful

as colors, texture coordinates, or even vectors that influence the blending or coloring of the final pixel.

Temporary and Output Registers

Similar to the vertex shader registers, the temporary registers hold temporary data between shader
instructions. They are four component color values held as floating-point values. Unlike vertex shaders,
the r0 value is the final output color value from the shader. You can use the r0 register as a temporary
register as well, but whatever r0 is at the end of the shader is what is passed along to the later stages
of the pipeline. Also, the values of all the temporary registers are floating-point values within the shader,

but r0 is clamped to the range of 0.0 to 1.0 upon leaving the shader.

Constant Registers

Pixel shader constants have exactly the same form and function as vertex shader constants except that
the values should be in the range of —1.0 to 1.0. In many cases, you'll see the constants defined in the
pixel shader itself. In most pixel shader techniques, the constant value is truly constant, meaning that it
never really changes. You can feed changing values to the pixel shader through the vertex shader. If

you need to, you can also feed constant values to the pixel shader with API calls.

Texture Registers

The texture registers supply the pixel shader with texture information. Technically, the texture register
contains the texture coordinates, but in most cases that information is immediately converted into the
color data as sampled from those coordinates. In shader versions 1.1 through 1.3, the texture registers
can be read as coordinates and then written with the color data. In version 1.4, they are read only and
are used as a parameter to load color data into other registers. The exact function of these registers will
become clearer after the discussion on shader instructions. The number of texture registers depends on

the number of texture stages.

Dependent Texture Reads

In most cases, you use the texture register to sample data based on the texture coordinates passed
from a vertex shader. However, the purpose of some pixel shader instructions is to manipulate texture
coordinates in the pixel shader before the actual texture value is read. This is called a dependent
texture read because the coordinates used to fetch the texture value depend on some earlier pixel

shader operation and not just external factors. Figure 16.3 shows a graphical representation of this.

252

R ' banecoord
nsruchans

Cobor Values (n),)

Testure Coordinates

Ll

Instructions el ARMMELC INSFUCHONS |am—

Cther w1 1—v13 Testurs Sampler
Tecdure Addrassing
Instructions }
Tasdurs

Figure 16.3: Normal and dependent texture reads.

This allows the programmer to build a series of texture stages that provide lookup functionality into each
subsequent stage. For instance, there are techniques in which a vertex shader provides texture
coordinates into a texture that contains color values used as texture coordinates into another texture. If
these are used correctly, they form the basis of mathematical functions that go well beyond the
operations made possible by the texture stage states. The next section on instructions covers this in

more detail.

Pixel Shader Instructions

Pixel shader instructions operate on input and temporary register values in much the same way as
vertex shader instructions. There are a couple of major differences. The first difference is that pixel
shaders support a much lower instruction count for each shader. This is a limiting factor, but it makes
sense in practical terms because of the frequency of use of a pixel shader. Hardware capabilities aside,
you wouldn’t want to write a long shader that might have to operate on millions of pixels per frame. The
other major factor is support for instruction modifiers. Instruction modifiers can be powerful add-ons to

shader instructions. | discuss the modifiers in the next section.

One annoyance is that different pixel shader versions support different instructions to varying degrees.
In the following explanations, | list the supporting shader versions for each instruction. If there is no list,

you can assume that the instruction is equally supported across all current versions.

There are three general categories of instructions. I'm calling them setup instructions, arithmetic
instructions, and texture addressing instructions. The setup instructions category is a bit of a catchall
category for the three instructions that don’t fit the other categories. Tables 16.1 lists the setup

instructions.

Table 16.1: Pixel Shader “Setup” Instructions

Instruction Comments

ps The ps instruction tells the shader to compile which version you are using.

Currently, the most widely supported version is 1.1, but later versions will

soon enjoy wider support.

253

Table 16.1: Pixel Shader “Setup” Instructions

Instruction Comments

def The def instruction defines a constant value as a four-component vector.
This is useful for setting values that never change throughout the lifetime of
the shader.

phase This instruction is unique to version 1.4. Version 1.4 lets you split the pixel

shader into two different phases of operation, which can effectively double the
amount of instructions per pixel shader. Color values set in one phase of the

shader carry through to the second phase of the shader, but alpha values are
not guaranteed to be intact. If the shader has no phase instruction, the device

runs the shader as if it were in the final phase. (1.4 only.)

Table 16.2 lists the arithmetic instructions. Most of these instructions are at least partially supported in

all shader versions. Be careful, because a couple of them are either not supported or they use up more

than one instruction count.

Table 16.2: Pixel Shader Arithmetic Instructions

Instruction Format Comments
mov mov Result, Simply move a value from one register to
Input0 another. This might be useful for moving
temporary values to r0 for final output from the
shader.
add add Result, Add one register value to another and place the
InputO, Inputl sum in the result register.
sub sub Result, Subtract one value from another and place the
InputO, Inputl result in the result register. Pixel shaders also
support register negation, so you can just use
the add instruction with a negative input.
mul mul Result, Multiply two values together and place the
Input0, Inputl product in the result register. Like vertex
shaders, pixel shaders do not support a division
instruction. Any time you need to divide a
number, you need to get the reciprocal into the
shader.
mad mad Result, Like the mad vertex shader instruction, this
InputO, Inputl, instruction performs a multiply and an add in a
Input?2 single instruction. First, ITnput0 is multiplied by

254

Table 16.2: Pixel Shader Arithmetic Instructions

Instruction

Format

Comments

Inputl. Input?2 is then added to the product,
and the final result is placed in the result

register.

dp3

dp3 Result,

Input0, Inputl

This instruction performs a three-component
dot product operation between the values
stored in Input0 and Inputl. These values
are assumed to be vector values, although you
might be able to find other uses for it. Chapter

31 makes use of this instruction.

dp4

dp4 Result,

Input0, Inputl

This is the same as dp3 with four components.
This instruction is supported only on versions
1.2 and higher and counts as two instructions in
versions 1.2 and 1.3. (1.2, 1.3, 1.4.)

cnd

cnd Result,
InputO0, Inputl,

Input?2

This conditional instruction sets the values in
the result register based on whether the
components are greater than 0.5. In version
1.4, this instruction operates on each
component separately. If a given component of
InputO is greater than 0.5, that component of
the result register is set to the value of that
component of Input1; otherwise, the value is
retrieved from Input2. Therefore, it is possible
for the result vector to be some amalgam of
values from Inputl and Input2. In all
versions previous to 1.4, the comparison value
is limited to one value in r0.a. (1.1, 1.2, 1.3,

1.4 with the aforementioned restrictions.)

cmp

cmp Result,
InputO0, Inputl,

Input?2

This is similar to cnd, only this time the input
components are compared to 0.0. If they are
greater than or equal to 0.0, the value from
Inputl is chosen; otherwise, the value from
Input? is chosen. This instruction is supported
in version 1.2 and above, but it counts as two
instructions in versions 1.2 and 1.3. (1.2, 1.3,

1.4 with restrictions.)

255

Table 16.2: Pixel Shader Arithmetic Instructions

Instruction Format Comments

1rp lrp Result, The “lerp” instruction linearly interpolates the
InputO, Inputl, values in Inputl and Input2 based on the
Input?2 factors in Input0. For instance, a single

component of the result value is computed as

Result.r = (Inputl.r * InputO.r) +

(Input2.r * (1.0 - InputO.r)).

bem bem Result.rg, This instruction is supported by version 1.4
InputO, Inputl only. It computes a fake environmental bump
map value based on the bump matrix texture

stage state setting. (1.4 only.)

nop nop This instruction literally does nothing.

Instruction Pairing

The pixel shader processes alpha and color data in two different pipelines. It is therefore possible to
specify two completely different instructions for the two pipelines that execute simultaneously. For
instance, you might want to issue a dp3 instruction for the RGB data but simply move the alpha value

from one register to another. You can do this as follows:
dp3 r2.rgb, rl, cl

+ mov r0.a, c2

There are some limitations as to which instructions you can coissue. A decent rule of thumb is that you
can’t pair the instructions with the most limitations or caveats. The simple arithmetic instructions should

be safe to pair.

Texture Addressing Instructions

The texture addressing instructions can be more powerful than the arithmetic instructions. They can
also be more confusing to use. Table 16.3 briefly explains the texture addressing instructions. | explain

some of these instructions in more detail in later technique chapters.

Table 16.3: Pixel Shader Texture Addressing Instructions

Instruction Format Comments

tex tex t(n) This instruction loads the value from a given texture

stage based on the texture coordinates for that stage.

This basically pulls the value in for processing. The tex

256

Table 16.3: Pixel Shader Texture Addressing Instructions

Instruction

Format

Comments

instruction is not supported in version 1.4. For version
1.4 shaders, use tex1d. (1.1, 1.2, 1.3))

texld

This instruction loads the color values from a texture
into a temporary register. In this case, the texture
register t (n) holds the texture coordinates and r (n)
holds the actual texture data. Therefore, the line tex1d
r2, t0 takes the texture coordinates from stage 0 and
uses them to look up a color value in the texture in

stage 2. The color values are written to r2. (1.4 only.)

texcrd

texcrd Result,

t (n)

In version 1.4, the texcrd instruction copies the
texture coordinate data from t (n) into the result
register as color information. In the second phase of
the pixel shader, you could use this result register as a

source in a call to tex1d, but only in phase 2. (1.4

only.)

texcoord

texcoord t(n)

This instruction is somewhat of a partner to tex and
analogous to texcrd. If the shader calls this
instruction rather than tex, the texture coordinate data
is loaded instead of the color value. This can be useful
for techniques in which the vertex shader passes data
into the pixel shader via texture coordinates. (1.1, 1.2,
1.3)

texreg2ar

texregZ2ar t(m),

t (n)

This instruction interprets the alpha and red
components of the t (n) as u and v texture
coordinates. These texture coordinates are used to
index into t (m) to retrieve a color value from that
texture stage. For example, a vertex shader could set
the texture coordinates for stage 0 to (0, 0). The alpha
and red components at that point in the texture might
both be 0.5. Therefore, you could use the texture
coordinates (0.5, 0.5) to find the texel value in the
middle of t1. That line in the pixel shader would look
like texreg2ar t1, t0.The final texture stage must

be greater than the source texture stage. (1.1, 1.2, 1.3.)

texreg2gb

texreg2gb t (m),

This is the same as texreg2ar, only in this case the

257

Table 16.3: Pixel Shader Texture Addressing Instructions

Instruction

Format

Comments

t (n)

green and blue components are used as texture
coordinates. (1.1, 1.2, 1.3.)

texreg2rgb

texreg2rgb

t(m), t(n)

Again, this is the same as earlier, but it supports three
texture coordinates for use in a cube map or 3D

texture. (1.2 and 1.3 only.)

texkill

texkill t(n)

This instruction “kills” the current pixel if any of the first
three texture coordinates are less than zero. This can
be useful for implementing clipping planes in the pixel
shader, but it can cause undesired effects if you are
using multisampling. In version 1.4 phase 2, the input
register can be a temporary register that was set in

phase 1.

texm3x2pad

texm3x2pad

t(m), t(n)

This instruction does the first half of a 3-by-2 matrix
calculation. The values in t (n) (usually a vector) are
multiplied by the first three values in the texture
coordinates of stage m, which in this case are used as
the first row of a 3x2 matrix. You can only use this
instruction with either texm3x2tex or texm3x2depth
(see later). You can’t use it alone. Think of this
instruction as the first part of one two-part instruction.
(1.1,1.2,1.3)

texm3x2tex

texm3x2tex

t(m+l), t(n)

This is the second part of the preceding instruction. The
destination register must be from a higher texture stage
than the other two stages. This instruction does the
second part of the 3x2 matrix multiply. t (n) is
multiplied by the second row of the matrix (stored as
the texture coordinates for stage m+1). The result is
then used as a lookup into the texture at stage m+1.
The result of this instruction is that t (m+1) contains
the lookup color. This instruction is best explained by
example. Chapter 32 concentrates heavily on this and

similar instructions. (1.1, 1.2, 1.3.)

texm3x2depth

tex3x2depth

t (m+1l), t(n)

This is the alternate second half of the tex3x2pad
instruction. If you use this instruction, tex3x2pad

should have been used to calculate the z value for this

258

Table 16.3: Pixel Shader Texture Addressing Instructions

Instruction

Format

Comments

particular pixel (based on the first row of the matrix).
This instruction computes w using the coordinates from
stage m+1 as the second row of the matrix. This
instruction then computes z/w and tags that value to be

used as an alternate depth value for this pixel. (1.3

only.)

texm3x3pad

tex3x3pad t (m),
t (n)

This instruction is exactly the same as tex3x2pad
except that it works on a 3x3 matrix. Therefore, you
need to make two calls to tex3x3pad before
completing the instruction with tex3x3tex,

tex3x3spec, or tex3x3vspec. (1.1, 1.2, 1.3.)

texm3x3tex

tex3x3tex

t (m+2), t(n)

Like tex3x2tex, this instruction completes a full
matrix operation. In this case, it's a full 3x3 matrix
multiply. This assumes that it was preceded by two
calls to tex3x3pad and that each stage used was
higher than the last. The result of the multiplication is
used as the texture coordinates to retrieve the texture

value from t (m+2). (1.1, 1.2, 1.3.)

texm3x3spec

tex3x3spec
t(m+2), t(n),

c(n)

This is an alternate to tex3x3tex. The result of the
3x3 matrix multiply is treated as a normal vector for
reflection calculations. c (n) stores a constant eye
vector, which this instruction reflects about the resulting
normal vector. The resulting 3D vector is used as a set
of texture coordinates into the texture in stage m+1.
You use this instruction for environmental mapping.
(1.1,1.2,1.3)

texm3x3vspec

tex3x3vspec

t (m+2), t(n)

This is similar to tex3x3spec, but it does not use a
constant eye vector. Instead, the eye vector is retrieved
from the fourth component of the matrix rows. (1.1, 1,2,
1.3)

texm3x3

texm3x3 t (m+2),
t (n)

This instruction can also complete the three instruction
series. This instruction moves the final vector to the
output register without doing the texture lookup. (1.2,
1.3))

259

Table 16.3: Pixel Shader Texture Addressing Instructions

Instruction Format Comments
texbem texbem t (m), This instruction computes fake environmental bump-
t(n) mapping information using the bump matrix set by calls
to SetTextureStageState. The color values in
t (n) are multiplied by the texture matrix, and the result
is used to index into the texture at stage m. (1.1, 1.2,
1.3.)
texbeml texbeml t(m), This is an augmentation of texbemn. It performs the
t(n) same function as texbem but adds a luminance
correction from texture stage states.
texdepth texdepth r(n) You can only use this instruction in the second phase
of a version 1.4 shader. The first phase must fill the r
and g components of the register with z and w values.
This instruction computes z/w and tags it to be used as
the depth value for this pixel. (1.4 phase 2 only.)
texdp3 texdp3 t(m), This instruction computes the three component dot
t(n) product of the data in t (n) and the texture coordinates
of t (m) . The resulting scalar value is copied to all four
components of t (m). (1.2, 1.3.)
texdp3tex texdp3tex t(m), This instruction computes the dot product as the

t (n)

preceding instruction, but the resulting scalar value is
used as an 1D texture lookup into the texture at stage
m. The resulting color value is written to the t (m)
register. (1.2, 1.3.)

With texture addressing instructions, it’s frequently difficult to understand when t (n) is used for texture

coordinate data and when it contains a color value. To clear that up, here are a few examples of how

texture coordinates are related to texture color values and texture output registers.

In the following case, the texture at stage 0 is sampled with the texture coordinates from stage 0. The

resulting color value is written to t0. Subsequent instructions that use t0 will be using the sampled

color value:

tex t0

In this example, the t 0 register is written with the texture coordinates from stage 0. Subsequent

instructions that use t0 will be using the texture coordinate data interpreted as a color value:

texcoord t0

260

The next line of code uses the first two texture coordinates from stage 0 as coordinates into the texture
at stage 1. The stage 1 texture is sampled, and the resulting color value is written to t1. Subsequent

instructions with t1 will be using the color value from the sampled texture of stage 1:

texreg2ar tl, tO

In all shader versions prior to 1.4, the t (n) registers can be both read and written. When they are read,
the texture coordinate is the data that is read. When they are written to, the written value could contain
the sample texture color data or perhaps an interpreted texture coordinate (in the case of texcoord).
In version 1.4, the texture registers are only readable. In this case of the tex1d instruction, the t0
register contains the texture coordinates, and r0 contains the result of using those coordinates to

sample into the texture at stage 0:

texld r0, tO

Later chapters show some of these instructions in action. They should make more sense when you see

them used.

The processing functionality is not limited to a set of instructions. Like vertex shaders, pixel shaders

provide a host of modifiers that provide many freebies.

Pixel Shader Modifiers

Pixel shaders provide some of the added features of vertex shaders in terms of negation and write
masks, but they also provide instruction modifiers for powerful added functionality. Table 16.4 shows the

available source register modifiers.

Table 16.4: Pixel Shader Source Register Modifiers

Modifier Syntax Comments

Bias r0 bias Subtract 0.5 from all four components of the
register. You can apply this modifier to any source

register.

Invert 1- r0 Subtract the values of the source register from 1.0
before the actual instruction is performed. The

contents of the source register are not changed.

Negate -r0 Negate the components before the instruction.
Again, the actual contents of the source register

are not changed.

Scale by 2 r0 x2 This modifier multiplies the components by 2.0
before the instruction begins. This modifier is only

supported in version 1.4.

Signed scale r0 bx2 This modifier subtracts 0.5 and multiplies the result

261

Table 16.4: Pixel Shader Source Register Modifiers

Modifier

Syntax

Comments

by 2. This modifier is most useful when converting
values from the color range of 0.0 to 1.0 to the

vector range of —1.0 to 1.0.

Pixel shaders also support a less powerful form of swizzling. You can replicate one channel to all color

channels before an instruction executes. Like vertex shader swizzling, the underlying register data does

not change. Table 16.5 shows the source register selectors.

Table 16.5: Pixel Shader Source Register Selectors

Selector

Syntax

Comments

Replicate Alpha

r0.a

This selector replicates alpha
to all components of the input
register. This selector is
compatible with all shader

versions.

Replicate Blue

rO0.b

Replicate the blue channel to
all of the components. This
selector is available on all
shader versions 1.1 and

higher.

Replicate Green

rO.g

Replicate green to all
channels. This is only

supported in version 1.4.

Replicate Red

rO.r

Replicate red. This is only

available in version 1.4.

There is also support for write masks. In all shader versions, you can choose whether to write to all

channels, alpha only, or color only. In version 1.4, you can select arbitrary channels to be written to. The

syntax is the same as vertex shader write masks, only using the .rgba labeling shown in Table 16.5

rather than .xyzw.

The final modifiers are instruction modifiers. You can think of these modifiers as the final operations that

are performed before the result value is set. Table 16.6 describes these modifiers. The examples use

the add instruction, but you can use the modifiers with most arithmetic instructions.

Table 16.6: Pixel Shader Instruction Modifiers

Modifier

Syntax

Comments

262

Table 16.6: Pixel Shader Instruction Modifiers

Modifier Syntax Comments

Multiply by 2 add x2 This modifier multiplies the

result of the instruction by 2.

Multiply by 4 add x4 This multiplies the result by 4.

Multiply by 8 add x8 This instruction modifier is only
available in version 1.4. It

multiplies the result by 8.

Divide by 2 add d2 This divides the result by 2.

Divide by 4 add d4 This divides the result by 4
and is only available in version
1.4.

Divide by 8 add d8 Divide the result by 8. This is
also only available in version
1.4.

Saturate add sat Clamp the result to the range

of 0.0 to 1.0. The saturate
modifier ensures that values

stay within the usual color

range.

Pixel Shader Limitations and Caveats

As with vertex shaders, the primary limitation of pixel shaders is the limit on instruction count. Pixel
shaders are significantly more limited than vertex shaders. Versions 1.1, 1.2, and 1.3 have a limit of 4
texture addressing instructions and 8 arithmetic instructions, for a grand total of 12 instructions. Version
1.4 pixel shaders support eight arithmetic instructions and six texture addressing instructions for each of
the two phases. This creates a grand total of 28 available instructions. This is more than double the
number of instructions available in previous versions but still far below the number of instructions

available in a vertex shader.

Although there is a limit on the number of addressing and arithmetic instructions, there is no limit on the
number of “setup” instructions. The def, phase, and ps instructions do not use up available instruction

count.

Another limitation is the number of available registers. Table 16.7 lists the register limitations for all pixel

shader versions.

Table 16.7: Pixel Shader Register Limitations

263

Register Type Limit in Versions 1.1-1.3 Limit in Version 1.4
Color register v (n) 2 2 (phase 2)

Texture register t (n) 4 6

Constant register ¢ (n) 8 8

Temporary register r (n) 2 6

Finally, pixel shaders are limited by the hardware they run on. Some pieces of hardware might never
support some versions of pixel shaders. Unlike vertex shaders, there is no acceptable software fallback
for pixel shader support. If the hardware doesn’t support them, the performance is abysmal. You can

use the reference device to test shader implementations, but not for production code.

Determining Pixel Shader Support

As with vertex shader support, you can determine pixel shader support with a call to SetDeviceCaps.
The Caps structure includes a DWORD member called PixelShaderVersion. The value encodes both
the main version number and the subversion number. The best way to resolve the meaning of this value

is with the D3DPS VERSION macro:

D3DCAPS8 Caps;

m pD3D->GetDeviceCaps (D3DADAPTER DEFAULT, D3DDEVTYPE HAL,

&Caps) ;

if (Caps.PixelShaderVersion == D3DPS VERSION(1l,1))

{

if (FAILED (EasyCreateWindowed (m hWnd, D3DDEVTYPE HAL,

D3DCREATE HARDWARE VERTEXPROCESSING)))

return FALSE;

This is the maximum shader version. Devices that support a given shader version should support earlier
versions as well. If the device doesn’t support pixel shaders, you might need to implement a fallback
technique using texture blending operations, or you might want to disable certain effects altogether. If

pixel shaders are supported, you can move forward and actually create the shader.

Assembling, Creating, and Using Pixel Shaders

Assembling a pixel shader is similar to assembling a vertex shader. You should use the same calls to

the D3DXAssembleShader functions (see previous chapter). If the syntax is correct, the assembled

shader is in the shader buffer. You can use the assembled shader to actually create the shader.

264

The CreatePixelShader function appears next. It is similar to CreatevVertexShader, but it does
not require a declaration. Pixel shaders always deal with four-component color values regardless of the

texture or buffer format:
HRESULT IDirect3DDevice8::CreatePixelShader (CONST
DWORD *pAssembledShader,

DWORD *pShaderHandle) ;

You can enable the resulting shader handle with calls to SetPixelShader:

HRESULT IDirect3DDevice8::SetPixelShader (DWORD ShaderHandle)

Calling setPixelShader is analogous to setting several texture stage states. You can disable the
pixel shader by passing NULL to SetPixelShader. You can use texture stage states as usual if there
is no current pixel shader. In fact, you might still want to use texture states for very simple operations.
For instance, by default the first texture stage modulates the diffuse color. There is no need to

implement this operation in a shader; let the default blending operations handle it.

A Very Simple Pixel Shader Application

Unfortunately, | need to explain several vertex shader applications before | can get to really interesting
and useful pixel shader applications. Most of the interesting pixel shader applications require a vertex
shader to feed the proper data into the pixel shader. In this chapter, | concentrate on a simple
application that illustrates some of the basic concepts. After that, Chapter 29 is the first chapter that

uses pixel shaders for something useful.

This chapter uses a simple vertex shader to compute per-vertex directional lighting values. These
lighting factors are interpolated over the surface of a simple plane. A pixel shader blends a texture with
the lighting value, but it also uses a second texture to define an area of the texture that reflects less light.
This is an oversimplified version of per-pixel lighting. The vertex shader computes per-vertex lighting,
but the pixel shader does one last line of calculations to figure out a lighting value for each pixel. Figure

16.4 shows a screenshot of the application.

265

Figure 16.4: Very simple pixel shader application.

To understand what'’s being fed into the pixel shader, you must first take a look at the vertex shader.

Simple Lighting in a Vertex Shader

Chapter 24 goes into detail about how lighting calculations are performed in a vertex shader, so | don’t
go into all the theory here. This is an extremely simple vertex shader that computes the dot product of a
light vector and a vertex normal. | made the vertex shader output slightly convoluted in order to show
how to feed values into the pixel shader. Later chapters will show better examples of this. | wanted to
show how flexible shader interactions can be. The following shader code comes from

® pixelSetup.vsh:

vs.1l.1

Output the transformed position. These do not affect the pixel shader in any way:
dp4 oPos.x, v0, cO
dp4 oPos.y, v0, cl
dp4 oPos.z, v0, c2

dp4 oPos.w, v0, c3

Compute the dot product of the vertex normal and the light vector of a directional light. The value of the
dot product is the cosine of the angle between the two vectors. In this context, the dot product is used to
determine how much light is reflected off the surface in a simple diffuse lighting model. The light vector
is passed to the vertex shader as c4. It's negated to transform it to a "vertex to light" vector. The final
output is written to the specular color output oD1. This corresponds to the color input v1 in the pixel

shader:

dp3 oDl, v3, -c4

The c5 constant stores an ambient lighting value. Move this value to oDO0 (v0 is the pixel shader). This

is where I've made the shader slightly convoluted. Sometimes you could argue that you could add the

266

directional lighting and ambient lighting in the shader. You could argue about what data goes in what
register. Remember that the point of this application is to show flexibility instead of proper lighting

technique:

mov oDO, c¢5

Finally, move the texture coordinates (v7) to the output texture coordinates. This allows the pixel shader

to index into the texture properly:

mov oTO0, v7

So the vertex shader sets things up by sending two color values and a set of texture coordinates to the

pixel shader. This is shown in Figure 16.5.

Warlex Vertex Shader
| Pogilign | l Prositicn |
1] | Translormatiors | - oPrs
Pixel Shader
Compuln
oLl k]
[w1]
—

— o]
Toxtisw

Coordinates «7 o]
aTd

Figure 16.5: Pixel shader setup in a vertex shader.

The pixel shader does the last line of processing.

Simple Blending in a Pixel Shader

Texture stage 0 contains one texture that really serves two purposes. The color channel defines the
colors of the object and the alpha channel defines how well each pixel reflects the directional light.
Again, keep in mind that this is not the best lighting model in the world. Figure 16.6 shows the color and

alpha channels of the texture.

Figure 16.6: Color and alpha channels of the texture.

One of the points here is that the alpha channel is a convenient storage area for values that are not

necessarily visible, but necessary for calculations. If you are not explicitly using the alpha channel for

267

transparency data, you can always use it for something else. In this case, | am using it to hold an 8-bit

scaling factor for the directional lighting value. The following shader code appears in ® Simple.psh.
The first line tells the shader assembler which shader version this is meant for:

ps.1l.1

This first line loads the texture value into the pixel shader. You can think of this line as using the texture
coordinates in t0 as the input and using t0 as an output register for the color values at this particular
pixel. After this line, the t0 register contains the sample color values for this pixel based on the texture

coordinates that were interpolated from the vertices:

tex t0

This next line is where all the real work happens. The mad instruction multiplies the interpolated
directional lighting value by the scaling factor in the alpha channel of the texture. The ambient lighting
value is added to the scaled directional value. This means that the surface is affected by ambient
lighting evenly over the surface, but directional lighting is reflected with different intensities for different

pixels. It's an odd way to light an object but makes for a simple pixel shader:

mad r0, vl1, t0.a, vO

Once the lighting values are resolved, the final value is modulated by the texture color value. The r0
register is both a temporary register and the output register. In vertex shaders, the output registers are
read only. You can’t use them as inputs to an instruction. This is not the case in pixel shaders. You can

use the r0 register repeatedly, but make sure that the final value is the value you want emitted:

mul r0, r0, tO

Figure 16.7 shows a close-up of the final output of the application. Notice that the darkened blob
matches the shape defined in the alpha channel in Figure 16.6.

Figure 16.7: Tile with varying directional reflection.

The shaders themselves are pretty simple. The last remaining piece is the application that holds

everything together.
Simple Pixel Shader Application

268

The preceding shaders do most of the interesting work. The main role of the application is to supply the
shaders with data and make sure the right shaders are created and active at the right time. In the
following code, | show only the new functions. The complete source code appears on the CD
(\Code\Chapter16).

First, | extended the PostInitialize function to check for pixel shader support. If the hardware
device doesn’t support pixel shaders, the application falls back to the reference device. This is good for
testing, but in a real application you'd be better off disabling the technique instead of using the reference

device:

BOOL CTechniqueApplication::PostInitialize ()

{

Get the caps and check for vertex and pixel shader support with the version macros. All the samples in
this book use version 1.1 shaders to maximize the hardware support. If shaders are supported, create a
hardware device using the convenience function. Otherwise, create a reference device. Keep in mind
that the reference fallback might be extremely slow, especially if you have a slow CPU. If your hardware
doesn’t support shaders, you might have to wait several seconds before any frames are rendered.

Remember to be patient if this is the case:
D3DCAPS8 Caps;

m_pD3D->GetDeviceCaps (D3DADAPTER DEFAULT, D3DDEVTYPE HAL,

&Caps) ;
if (Caps.VertexShaderVersion == D3DVS VERSION(1l,1) &&
Caps.VertexShaderVersion == D3DPS VERSION(1l,1))

if (FAILED (EasyCreateWindowed (m hWnd, D3DDEVTYPE HAL,
D3DCREATE_HARDWARE_VERTEXPROCESSING)))

return FALSE;

else

if (FAILED (EasyCreateWindowed (m hWnd, D3DDEVTYPE REF,
D3DCREATE_SOFTWARE_VERTEXPROCESSING)))

return FALSE;

SetupDevice and CreatePlaneBuffer do some basic device setup and buffer creation for a four-

point rectangle. They are not shown in this text. There’s nothing new going on there:

269

SetupDevice () ;
if (FAILED (CreatePlaneBuffer()))

return FALSE;

CreateShaders creates both the vertex and the pixel shader. If this function fails, that probably means
that you have a syntax error in your shader. If the shader is correct, this should never fail because of the
fallback to the reference device. If you disable the reference fallback, this might fail in the case where

shaders are not supported:
if (FAILED (CreateShaders()))

return FALSE;

This texture is the one shown in Figure 16.5. Both the color and the reflectance data are encoded into

this single texture:
if (FAILED(D3DXCreateTextureFromFile (m pD3DDevice,
"Tile.dds",

&m_pTexture)))

return FALSE;

return TRUE;

The CreateShaders function creates the shaders used when the scene is rendered. This code is

similar to the code shown in the previous chapter:

HRESULT CTechniqueApplication: :CreateShaders ()

{

ID3DXBuffer* pShaderBuffer;

ID3DXBuffer* pShaderErrors;

The vertex shader is created and assembled as described in the previous chapter. In a real

implementation, you might want to look at the contents of the error buffer if this fails:
if (FAILED (D3DXAssembleShaderFromFile ("PixelSetup.vsh",
0, NULL, &pShaderBuffer,

&pShaderErrors)))

return E FATL;

if (FAILED (m_ pD3DDevice->CreateVertexShader (Declaration,

270

(DWORD *)pShaderBuffer->GetBufferPointer (),
&m_SetupShader, 0)))
return E FATL;

Release the shader buffer so it can be reused to create the pixel shader. You shouldn’t need to release

the error buffer because it was not created if you got this far:
pShaderBuffer->Release();

The call to create the pixel shader is exactly the same as the call to create the vertex shader. The

assembler uses the first version instruction to figure out what type of shader it is and how it should be
assembled:

if (FAILED (D3DXAssembleShaderFromFile ("Simple.psh",
0, NULL, &pShaderBuffer,
&pShaderErrors)))
return E FATL;
The call to CreatePixelShader is similar to the call to CreatevVertexShader, but there is no need
for a declaration. If everything is successful, you have a valid pixel shader handle to use when

rendering:

if (FAILED(m pD3DDevice->CreatePixelShader (
(DWORD *)pShaderBuffer->GetBufferPointer (),
&m_SimplePixelShader)))

return E FATL;

pShaderBuffer->Release();

return S OK;

These lines have taken care of creating the shaders. You should take care to destroy them when the

application ends or gets reset. The following code from PreReset shows how to delete the shaders:

BOOL CTechniqueApplication: :PreReset ()

{

Make sure the shaders are deleted with calls to DeleteVertexShader and DeletePixelShader.
You can create vertex buffers that are automatically re-created when a device is reset, but you must

delete and re-create shaders yourself:

271

m_pD3DDevice->DeleteVertexShader (m_SetupShader) ;

m_pD3DDevice->DeletePixelShader (m SimplePixelShader);

return TRUE;

Finally, the render function uses these shaders to do all the interesting work. The following code

assumes that all the previous code created the shaders properly:

void CTechniqueApplication: :Render ()

{

You must set the vertex shader. In this simple application, you could have set the vertex shader when
the shader was created, but I'm putting it here to better illustrate what's going on:

m_pD3DDevice->SetVertexShader (m_ SetupShader) ;

The following code animates the light's direction. The math is set up to always point the light down no
matter what the animation value is. After the light direction is defined, it is passed to the c4 constant of
the shader. In Chapter 24, you'll learn that this is a naive (and usually incorrect) view of how the light
vector relates to the transformations of the object, but it works for this simple application. If you decide
to change the world matrix you'll get incorrect results, but that’s not terribly important in this context.

You'll see what | mean in Chapter 24:
float Time = (float)GetTickCount () / 1000.0f;
D3DXVECTOR4 LightDir = D3DXVECTORA4 (sin (Time), -fabs(cos(Time)),
0.0f£, 0.0f);

m_pD3DDevice->SetVertexShaderConstant (4, &LightDir, 1);

Set a small amount of ambient light. The ambient light is passed to the vertex shader and in turn is

passed to the pixel shader:
D3DXVECTOR4 Ambient (0.1, 0.1f, 0.1f, 0.0f);

m _pD3DDevice->SetVertexShaderConstant (5, &Ambient, 1);

You must always pass the concatenated matrix to the shader. The matrices were set in SetupDevice:
D3DXMATRIX ShaderMatrix = m WorldMatrix * m ViewMatrix *
m_ProjectionMatrix;
D3DXMatrixTranspose (&ShaderMatrix, &ShaderMatrix);

m_pD3DDevice->SetVertexShaderConstant (0, &ShaderMatrix, 4);

272

Set the texture in stage 0. In this simple case, you could have set the texture when it was loaded, but |

am setting it here for clarity:

m_pD3DDevice->SetTexture (0, m pTexture);

Set the pixel shader. This shader expects certain input textures and vertex shader values. You could
use the pixel shader with a different vertex shader and texture, but the results would be unpredictable

and probably wrong:

m_pD3DDevice->SetPixelShader (m SimplePixelShader) ;

Everything is set up, so draw the mesh. In this case, the mesh is a simple textured plane. The mesh
contains the texture coordinates that tell the pixel shader how to sample the texture. As with other

texturing concepts, bad texture coordinates equal bad output:
m_pD3DDevice->SetStreamSource (0, m pPlaneVertexBuffer,
sizeof (MESH VERTEX)) ;

m_pD3DDevice->DrawPrimitive (D3DPT TRIANGLESTRIP, 0, 2);

It's usually a good idea to disable the pixel shader when it’'s not being used. In this case, the pixel
shader is always being used, but | added this to demonstrate the importance of disabling the shader.
Like texture stage states, the pixel shader affects every pixel until it's explicitly changed. Unlike texture

stage states, disabling the shader is much easier than disabling each state separately:

m _pD3DDevice->SetPixelShader (0);

The output of this application has already been shown in Figures 16.4 and 16.6. This sample is a bit

contrived and the lighting procedures are not the best in the world, but it does illustrate the basics of
how a pixel shader is created, fed by a vertex shader, and used to affect the output of a rendering pass.

In Conclusion...

I’'m guessing that many readers are still a bit lost at this point. That's somewhat expected given the
novelty of the material. | personally believe that concepts are easier to digest when you see them being
used. In this chapter, | wanted to fly through the basic ideas and instruction definitions. Later chapters

solidify the ideas with examples.

That said, the next several chapters concentrate heavily on vertex shaders. You'll learn the syntax and
many of the concepts behind some interesting and fun techniques. These techniques will get you
thinking in terms of shader instructions, limitations, and so on. By the time you get to the first pixel
shader in Chapter 29, you should be pretty comfortable thinking about shaders. From there, the
transition from vertex shaders to pixel shaders is easier than you may think. So digest what you can
here, but remember that the later chapters solidify many of the ideas mentioned here. Before moving on,

here’s a recap of some of those ideas:

273

= Pixel shaders replace the more cumbersome texture state methodology with a programmable
model similar to vertex shaders.

= It is possible to use pixel shaders and texture-stage blending in the same application. In fact, you
should probably use pixel shaders for more complex operations but leave simple operations to the
“old way.”

= Four pixel shader versions enjoy varying levels of support on different pieces of hardware.
Currently, version 1.4 is the most powerful and the least supported. Any hardware that supports
pixel shaders at all will support version 1.1.

] Pixel shaders work in much the same way as vertex shaders. Registers are read and written to by
shader instructions before they are finally emitted as output.

] Most registers hold color information. The exception is texture registers. Texture registers hold
texture coordinate information. Depending on the instruction, you can use it either as a sampled
color or as vector data.

] The ps, def, and phase instructions set up the shader and do not count towards the instruction
count limit.

= You can use arithmetic instructions to do math operations on color values, and you can usually
coissue different instructions for the color and alpha values.

= Texture-addressing instructions are the most powerful instructions. They control how a texture
input is interpreted. You can use them to load color values or to do vector and matrix operations
based on texture coordinates.

= You can use modifiers to modify instructions, swizzle input registers, and mask output registers.
They offer more functionality with less instruction count.

= Pixel shaders are more severely limited by instruction count than are vertex shaders. These
limitations are not only on total count but also count on different instruction types and sometimes on
specific instructions and modifiers.

= You can determine whether hardware supports pixel shaders by looking at the device caps.

= Pixel shaders are assembled, created, and set much like vertex shaders. There is no need for any
sort of declaration when creating a pixel shader.

= For testing, you can always fall back to the reference device, but remember that you'll get

miserable performance.

Part V: Vertex Shader Techniques

Chapter List

Chapter 17: Using Shaders with Meshes
Chapter 18: Simple and Complex Geometric Manipulation with Vertex Shaders

Chapter 19: Billboards and Vertex Shaders

274

Chapter 20: Working Outside of Cartesian Coordinates
Chapter 21: Bezier Patches

Chapter 22: Character Animation—Matrix palette Skinning
Chapter 23: Simple Color Manipulation

Chapter 24: Do-it-Yourself Lighting in a Vertex Shader
Chapter 25: Reflection and Refraction

Chapter 26: Reflection and Refraction

Chapter 27: Shadows part 1—Planar Shadows

Chapter 28: Shadows part 2—Shadow Volumes

Chapter 29: Shadows part 3—Shadow Maps

In the previous chapters, | created application code that was as optimized as possible while still easy to

read. Throughout the rest of the book, | optimize the shaders, but not the application code. | show what

goes into the shaders without worrying about the tightness of the application. In most cases, | point out

where the code is bad and what you can do to improve it. If you see application code that breaks the

optimization rules laid out in previous chapters, assume that the previous chapter was correct.

The samples throughout the rest of the book use an updated application framework to display

performance data. The details of that framework are described in Chapters 37 and 38. However, you

are shielded from the details so that you can concentrate on the following concepts:

Chapter 17, “Using Shaders with Meshes,” describes how to break meshes out of the fixed-

function paradigm and how to deal with the data in a vertex shader. | used this technique as a basis
for nearly every subsequent chapter.

Chapter 18, “Simple and Complex Geometric Manipulation with Vertex Shaders,” describes how

to perturb vertices with complex functions.

Chapter 19, “Billboards and Vertex Shaders,” explains how to align a surface with a user’'s

viewpoint to create billboard effects.

Almost everything you see in 3D graphics is in Cartesian coordinates. In Chapter 20, “Working

Outside of Cartesian Coordinates,” | explain other coordinate systems and how a vertex shader can

convert from one system to another.

Chapter 21, “Bezier Patches,” expands on the ideas of geometric manipulation by introducing 3D

patches rendered by a vertex shader. And | talk about how to generate dynamic normals for

dynamic geometry.

275

= Matrix palette skinning is a method of animation that can apply multiple transformation matrices to

a single object. In Chapter 22, “Character Animation—Matrix Palette Skinning,” the palette skinning

is done with a vertex shader.

. Chapter 23, “Simple Color Manipulation,” teaches you to encode depth values into color values

and to adjust transparency for an x-ray effect.
. When you switch to shaders, you lose all the functionality of the fixed-function pipeline, including

lighting. In Chapter 24, “Do-lt-Yourself Lighting in a Vertex Shader,” | explain how to implement all

the DirectX lights in a vertex shader.

" Chapter 25, “Cartoon Shading,” shows how to implement cartoon shading in a single pass using

vector manipulation and two lookup textures.

. Environmental mapping allows objects to reflect the world around them. Chapter 26, “Reflection

and Refraction,” explains the concepts behind cube maps and using a shader to map them to a
surface.

" Shadows are necessary features in today’s games. Chapter 27, “Shadows Part 1—Planar

Shadows,” explains some mathematical concepts behind planes.

" Chapter 28, “Shadows Part 2—Shadow Volumes,” introduces a far more powerful shadowing

technique.

" Chapter 29, “Shadows Part 3—Shadow Maps,” details rendering to a texture and then projecting

that texture onto the entire scene. This is the first vertex shader technique that uses a pixel shader.

Chapter 17: Using Shaders with Meshes

@ Download CD Content

Overview

Chapter 15 briefly explained how to prepare mesh objects for use with shaders. This chapter explains
more of the details and presents some actual code. This technique really doesn’t teach anything new
about shaders themselves, but most of the time you'll be using shaders with meshes, so it's important
that you take a look at how to reformat meshes so you can apply shaders to them. In this chapter, | will
explain the steps needed to reformat and use meshes with shaders. In this chapter, | also discuss the
following:

= Learning how meshes store vertex data.

= Mapping materials to vertex colors.

= Using colors to store other vertex data.

= Exploring the performance considerations.

= Implementing code that extracts data from the mesh.

The Basic Idea

There seems to be some misunderstanding about how the D3DX mesh objects work. Some people feel

that meshes hide a lot of implementation details or that they make the underlying data harder to access.

276

This really isn’t true. For the most part, the D3DX mesh objects can be fairly transparent as long as you
know a little bit about how they work. Assuming that you’ve read the previous chapters, delving into the

mesh should be easy.

If you've taken a look at the mesh files on the CD, you may have noticed that all of the .X files are in text
format. This makes for a bigger file and longer load times, but it is also easier to see what's in the file.
The files contain the position data, the normals, the texture coordinates, and materials. They also
contain a section that maps materials to individual faces. When the D3DX library opens a file containing
a mesh, it determines the vertex format that matches the data and then loads the data into a vertex
buffer. It also creates and populates an index buffer. Finally, it creates an array of the mesh materials
and creates an attribute buffer to hold the one-to-one mapping between materials and faces. These

arrays are used when the geometry is drawn, as shown in Figure 17.1. Figure 17.2 shows how the

individual buffers are related.

E Filg Mesh Obgact D30 Davca
Maish data 2
et o banary ke Vi
iror AT el Bufles CoSmanGar Stream
Inchis i +
Bisliar SEirvics Stream T ha
Ty
Alfribute 4 |
Butor Sl Kigiods

o G0 G e Dy
Crmwlutan or by por ow oode

Figure 17.1: From the file to the screen.

Attribute Buffer| [ala]la]al]

l L] l L l

ndexgutier| | [[[[J[[[][f[]]
L
\iertax Eur'far| | | | | | | | | | | | |

Figure 17.2: The relationships between the buffers.

After these buffers are loaded, you can use them just as you would any of your own vertex or index

buffers.

So far, so good, but there is a wrinkle. If you weren’t using shaders, you could just call DrawSubset
and the mesh would render correctly in the fixed-function pipeline. Now that you’re using shaders, it's
very likely that the FVF of the original mesh will not match the format described in the shader
declaration. There are a couple ways to address this problem. The first way is to create a shader
declaration that you know matches the format of the mesh. This really isn’t the best idea because it
might force you to create suboptimal shaders. It might also require you to rewrite or at least tweak

shaders if the mesh format ever changes.

277

Tip
Remember, the cloning operation does not create new data. You can clone a mesh

format to add vertex normals, but the normals are not generated automatically. Cloning

produces more “slots” for data, but it's up to you to fill them.

A better way is to change the mesh format to fit your shader declaration. You do this with the cloning
methods described in Chapter 15. These methods create a new mesh that fits a given format, thus
making your shader happy, but they are not perfect. If the original mesh object contains more data than
the new format needs, the extraneous data is stripped out of the new mesh. However, if the original
mesh contains less data, you might need to populate the missing data in code. The sample code for this

chapter demonstrates how to do this.

From Materials to Vertex Colors

Most mesh files do not contain vertex colors. Instead, they contain materials that are mapped to faces
through the attribute table. If you load a mesh, you can clone it to a format that includes a vertex color,
but then you need to fill in the actual color values with more code. To do this, you have to back-track

from the attribute buffer. Figure 17.2 shows how the attribute buffer, index buffer, and vertex buffer are

interrelated.

| haven't talked about any of the mesh optimization methods yet, so you can assume that the attribute
buffer and index buffer map to each other linearly. With that assumption, you can walk through the
attribute buffer and map a given material to a given face. You'll go through this step-by-step. Let’s
assume you are only talking about extracting the diffuse color of a material so that you can populate the
diffuse color of a vertex. The first code snippet shows how to access the diffuse color of a face from the

attribute buffer:

DWORD *pAttribs;

m pMesh->LockAttributeBuffer (D3DLOCK READONLY, &pAttribs);
for (long Face = 0; Face < m pMesh->GetNumFaces (); Face++)

{

D3DXCOLOR Diffuse =
(D3DXCOLOR)m pMeshMaterials[pAttribs[Face]].Diffuse;

}

m pMesh->UnlockAttributeBuffer();

The loop allows you to index into the attribute buffer, which then allows you to index into the material
array. Once you retrieve the specific material, you can extract the diffuse color. If you were interested in
more of the material properties, you could extract them just as easily. The second code snippet above
shows how to actually update the vertex buffer with the color information. The following snippet

assumes that the index and vertex buffers have been locked:

pMeshVertices[pIndices[Face * 3 + 0]].color = Diffuse;

278

pMeshVertices[pIndices[Face * 3 + 1]].color Diffuse;

pMeshVertices|[pIndices[Face * 3 + 2]].color = Diffuse;

You know each face constitutes a set of three entries in the index buffer. As you loop through each face,
the preceding code indexes into the index buffer and uses those values to index into the vertex buffer.
You can then set the diffuse color of each vertex to the diffuse color of the material. The source code for

this chapter shows the complete procedure.

When you're done, the vertices are individually colored. In fact, you could throw away the attribute table
entirely. The code for this chapter reuses the cloned vertex and index buffers contained in the mesh
object, but it would be easy to create new vertex and index buffers and copy the mesh data to them. In
fact, the D3DX mesh objects are good for loading the data initially, but in some cases they really don’t
add a lot of value during the actual rendering. In those cases, you could load the mesh, clone it to a new
format, copy the buffers, and release the mesh object. This would free up some memory. I'll leave that

as an exercise.

From Vertex Colors to Vertex Data

The preceding procedure outlined how to map material values to vertex colors, but if you think out of the
box a little bit, you can see some more powerful applications. In many cases, the actual vertex color is
not terribly interesting because the real visual impact comes from the texture. Vertices might still be
colored by lights and shading, but the actual color stored in the geometry might have limited value in the

final output. It might, however, be extremely useful when authoring your geometry in a modeling tool.

In many of the shader chapters, you'll see how data encoded into each vertex helps to determine the
effects of animation, warping, and other techniques. Most of that data can be encoded when the model
is being crafted. If you're a power user of a tool such as 3DSMAX, you can use scripting or plug-ins to
help encode data into a model. For most people, it might be easier to use color. You could decide that
different colors correspond to different values or parameters used by the vertex shader. You could
easily paint those values on your geometry in your modeling tool and then use them for something else
once the model is loaded. For instance, the previous snippets could extract the color from the materials
and then use that data to populate the blend weight of vertices. It could then populate the actual color
data with white. The idea is that the vertex color can be a valuable visual tool for the artist without
affecting what the end user sees. I'm being vague here because there are many possible ways to apply

this idea to your own needs.

Performance Considerations

As you will see later, mesh cloning involves a decent amount of code that involves locking and
unlocking buffers and moving a lot of data around. It’s a fairly expensive operation, but it's difficult to
think of any time that you would need to do this while you’re actually rendering. You usually do this

during initialization.

279

The one thing to consider here is memory usage. Remember that a cloned mesh is a new mesh. If you
clone and then do not release the old mesh, that mesh occupies memory. It could also possibly be in
video memory, which is more precious. Also, mesh-specific buffers such as the attribute buffers don’t
really do anything for you, so you might consider getting rid of the mesh altogether. The one thing to
remember is that you are creating new objects. Keep an eye on what is actually being used.

The Implementation

Figure 17.3 shows a screenshot from this chapter’'s sample application. There’s not a whole lot going on,

but it does show that the colors were successfully extracted from the materials.

Figure 17.3: The sample application.

There’s not much theory behind this technique, so the best way to explain it is to jump right into the
code. Many of the pieces borrow heavily from previous chapters, so the explanations concentrate on the
new material. Also, the header file for this technique doesn’t contain anything conceptually new, so it is
omitted here. As usual, the complete code appears on the CD in the \Code\Chapter17 directory. The

following code is from \Code\Chapter17\® TechniqueApplication.cpp:

#include "TechniqueApplication.h"

This is the desired vertex format that matches the shader declaration. The .X file contains the position

and normal data, but the color data is not part of the vertex format:
#define D3DFVF MESHVERTEX (D3DFVF XYZ | D3DFVF NORMAL |

D3DFVFEF DIFFUSE)

struct MESH VERTEX

{
float x, vy, z;

float nx, ny, nz;

280

DWORD color;
}i
CTechniqueApplication: :CTechniqueApplication ()
{

m_pMeshVertexBuffer = NULL;

m_pMeshIndexBuffer = NULL;

m_pMesh = NULL;
m _pMeshMaterials = NULL;
m NumMaterials = 0;
m_ShaderHandle = 0;

CTechniqueApplication: :~CTechniqueApplication ()

{

BOOL CTechniqueApplication::PostInitialize ()

{
D3DCAPS8 Caps;

m_pD3D->GetDeviceCaps (D3DADAPTER DEFAULT, D3DDEVTYPE HAL,

&Caps) ;

if (Caps.VertexShaderVersion == D3DVS VERSION(1,1))

if (FAILED (EasyCreateWindowed (m_hWnd, D3DDEVTYPE HAL,
D3DCREATE_HARDWARE_VERTEXPROCESSING)))

return FALSE;

else

if (FAILED (EasyCreateWindowed (m_hWnd, D3DDEVTYPE HAL,
D3DCREATE_SOFTWARE_VERTEXPROCESSING)))

return FALSE;

281

This will become the usual procedure for device creation in all the shader chapters:
SetupDevice () ;
LoadMesh () ;
ExtractBuffers();

CreateShader () ;

return TRUE;

void CTechniqueApplication: :Render ()

{

This shader setup code is copied from Chapter 15. Again, you are using a very simple shader so that

you can focus on meshes:
D3DXMATRIX ShaderMatrix = m WorldMatrix *
m ViewMatrix *

m _ProjectionMatrix;

D3DXMatrixTranspose (&ShaderMatrix, &ShaderMatrix);

m_pD3DDevice->SetVertexShaderConstant (0, &ShaderMatrix, 4);

The stream sources are set when the mesh is loaded, so simply call DrawIndexedPrimitive after
setting the vertex shader. The number of primitives is derived from the mesh itself. It might be slightly
faster to call these methods once and hold them as variables instead of constantly incurring the

overhead of a call to the mesh object:
m_pD3DDevice->SetVertexShader (m_ShaderHandle) ;
m_pD3DDevice->DrawIndexedPrimitive (D3DPT TRIANGLELIST, O,
m_pMesh->GetNumVertices (), O,
m_pMesh->GetNumFaces ()) ;
}

HRESULT CTechniqueApplication: :LoadMesh ()

{

LPD3DXBUFFER pD3DXMtrlBuffer;

282

LPD3DXMESH pOriginalMesh;

if (FAILED (D3DXLoadMeshFromX ("..\\media\\shaders\\Chapterl7.x",
D3DXMESH MANAGED,
m _pD3DDevice, NULL, &pD3DXMtrlBuffer,
&m NumMaterials, &pOriginalMesh)))

return FALSE;

D3DXMATERIAL* d3dxMaterials =

(D3DXMATERIAL*) pD3DXMtrlBuffer->GetBufferPointer () ;

m _pMeshMaterials = new D3DMATERIALS [m NumMaterials];

In previous chapters, this code usually included a line that set the ambient color of the material to match

the diffuse color. Because you're not actually using the materials, you don’t need to bother with that

anymore. In fact, once you copy the data into the vertex buffer, the array of materials is just using up

memory:

for (long MatCount = 0; MatCount < m NumMaterials; MatCount++)
{
m_pMeshMaterials[MatCount] =

d3dxMaterials [MatCount] .MatD3D;

pD3DXMtrlBuffer->Release () ;

if (pOriginalMesh->GetFVF () != D3DFVEF MESHVERTEX)

The mesh included with the sample is not in the same vertex format, so the mesh is always cloned. The

code clones the mesh into another mesh in managed memory with the new vertex format. It then

releases the mesh object that was used to load the file. The alternative is here just for completeness. If

the formats do match, the mesh is set to the original mesh and you move on:

pOriginalMesh->CloneMeshFVF (D3DXMESH MANAGED,
D3DFVEF MESHVERTEX,

m_pD3DDevice, &m pMesh);

283

pOriginalMesh->Release();

pOriginalMesh = NULL;

else

m _pMesh = pOriginalMesh;

return S OK;

Figure 17.4 shows how the newly cloned mesh relates to the old mesh.

Original Mash Cloned Mash
Viartex Buffar Vertax Buffar
esrla Position B e Positon
Worios Peormmal - oo Mool

it Gk
Index Buffer Index Buffer
Attribute Buffer Attribute Buffer

“All old values are retained
Mew valuas must be filled by
the application.

Figure 17.4: Cloning a mesh.

BOOL CTechniqueApplication: :PreReset ()

return TRUE;

BOOL CTechniqueApplication::PostReset ()

SetupDevice () ;

return TRUE;

284

BOOL CTechniqueApplication::PreTerminate ()

m_pD3DDevice->DeleteVertexShader (m_ShaderHandle) ;

Remember that the mesh object should still have references to the buffers, so calling Release on them

does not necessarily destroy them. They are destroyed when reference counts drop to zero:

if (m_pMeshVertexBuffer)

m_pMeshVertexBuffer->Release();

m_pMeshVertexBuffer = NULL;

if (m_pMeshIndexBuffer)

m_pMeshIndexBuffer->Release();

m_pMeshIndexBuffer = NULL;

if (m_pMesh)

m_pMesh->Release();

m pMesh = NULL;

Theoretically, you could have released the mesh materials earlier in the program. The materials are

never actually used in the program (after the vertices are set):

if (m_pMeshMaterials)

delete m pMeshMaterials;

m pMeshMaterials = NULL;

285

return TRUE;

void CTechniqueApplication::SetupDevice ()

{
This is the same old thing except for the fact that you don’t need to call SetTransform. Calling
SetTransform wouldn’t really cost you anything, but the point is that it is unnecessary:
RECT WindowRect;
GetClientRect (m_hWnd, &WindowRect);
D3DXMatrixPerspectiveFovLH (&m ProjectionMatrix,
D3DX PI / 4,
(float) (WindowRect.right - WindowRect.left) /
(float) (WindowRect.bottom - WindowRect.top),

1.0f, 1000.0f);

D3DXMatrixLookAtLH (&m ViewMatrix,
&D3DXVECTOR3 (0.0f, 50.0f, -50.0f),
&D3DXVECTOR3 (0.0f, 0.0f, 0.0f),

&D3DXVECTOR3(0.0f, 1.0f, 0.0f));

D3DXMatrixIdentity (&m WorldMatrix);

This is really the meat of the sample. You start by extracting the vertex and index buffers. This simply
gives you a reference. The mesh still has a reference as well, so you can'’t just destroy them at will. Also,
this did not create new buffers; it simply allows access to the existing ones. There are methods for

locking the buffers directly, but it is done this way for clarity:

HRESULT CTechniqueApplication::ExtractBuffers/()

{
m_pMesh->GetVertexBuffer (&m pMeshVertexBuffer) ;
m_pMesh->GetIndexBuffer (&m pMeshIndexBuffer);

MESH VERTEX *pMeshVertices;

286

short *pIndices;

DWORD *pAttribs;

The vertex buffer is locked with the default behavior of allowing data to be written. This is because you

are going to add a color to each vertex:
m_pMeshVertexBuffer->Lock (0,
m_pMesh->GetNumVertices () * sizeof (MESH VERTEX),
(BYTE **)&pMeshVertices, 0);
m_pMeshIndexBuffer->Lock (0, 3 * m pMesh->GetNumFaces ()
* sizeof (short),

(BYTE **)é&pIndices, D3DLOCK_ READONLY) ;

You're just going to read through the index and attribute buffers, so lock them as read-only.
Performance isn’t really an issue here, but there’s no point to setting them up for writing since you only

need to read the data:

m_pMesh->LockAttributeBuffer (D3DLOCK READONLY, &pAttribs);
| described this code earlier in the chapter. It's easy to get lost in some of the arrays, but remember that

you are looking into the index buffer, which contains the index you then use to access the correct

vertex:

for (long Face = 0; Face < m pMesh->GetNumFaces (); Face++)

D3DXCOLOR Diffuse =

(D3DXCOLOR)m pMeshMaterials[pAttribs[Face]].Diffuse;

pMeshVertices[pIndices[Face * 3 + 0]].color = Diffuse;
pMeshVertices[pIndices[Face * 3 + 1]].color = Diffuse;
pMeshVertices[pIndices[Face * 3 + 2]].color = Diffuse;

And of course, you unlock. If you are absolutely, positively sure you weren’t going to use them, this is

where you can release the array of materials:
m_pMeshVertexBuffer->Unlock();
m_pMeshIndexBuffer->Unlock() ;
m_pMesh->UnlockAttributeBuffer();

m_pD3DDevice->SetStreamSource (0, m pMeshVertexBuffer,

287

sizeof (MESH_VERTEX)) ;
m_pD3DDevice->SetIndices (m_pMeshIndexBuffer, O0);

return S OK;

The process of remapping the vertex data is shown in Figure 17.5.

4 [] []
Vertex buffer hold vertices

A A]]

Index buﬂ’er mags I’aces. to -.-emr:.es

&ALA

| Attrlbute buﬁer maps materlals to fau:es |

| =yir |

Material buffer
holds colors

Figure 17.5: Remapping vertex data.

HRESULT CTechniqueApplication: :CreateShader ()

const char BasicShader|[] =

"vs.1l.1 \n"

"dp4 oPos.x, v0, cO \n"

"dp4 oPos.y, v0, cl \n"

"dp4 oPos.z, v0, c2 \n"

"dp4 oPos.w, v0, c3 \n"

"mov oDO, v5 \n";

This declaration does not match the format of the loaded .X file, which is the whole point of this chapter.
In this chapter, you supplied the equivalent FVF to the cloning methods, but there are also cloning

methods that take declarations as input. This function is just a repeat of what you saw in Chapter 15:

288

DWORD Declaration[] =

{
D3DVSD STREAM(0),
D3DVSD REG (D3DVSDE POSITION, D3DVSDT FLOAT3),
D3DVSD REG (D3DVSDE NORMAL, D3DVSDT FLOAT3),
D3DVSD REG (D3DVSDE DIFFUSE, D3DVSDT D3DCOLOR),
D3DVSD _END ()

bi

ID3DXBuffer* pShaderBuffer;

ID3DXBuffer* pShaderErrors;

if (FAILED (D3DXAssembleShader (BasicShader,
sizeof (BasicShader) - 1,
0, NULL, é&pShaderBuffer, &pShaderErrors)))

return E FATL;

if (FAILED (m_ pD3DDevice->CreateVertexShader (Declaration,
(DWORD *)pShaderBuffer->GetBufferPointer (),
&m_ShaderHandle, 0)))

return E FATL;

pShaderBuffer->Release();

return m _pD3DDevice->SetVertexShader (m_ShaderHandle) ;

}
In Conclusion...

Okay, so this wasn't really a way-cool special effect, but in many cases it might be an important part of

using shaders. Also, | hope it demystifies the mesh objects a little bit by showing how to get at and

manipulate the underlying data. This will come in handy in many later chapters. Until then, let’s review:

] Shader declarations and vertex formats must match; otherwise, the shader will produce bad
results or fail altogether.

] If a mesh is cloned with an expanded FVF, the data might not be filled in even though it may exist

somewhere.

289

= Mesh objects are fairly easy to open up and deconstruct. At the most basic level, they are just the
now familiar combination of index and vertex buffers.

] You do not need to use data stored in an .X file in the most obvious ways. Once the file is loaded,
feel free to use it however you like. Think out of the box.

" Many of the steps in this procedure produce new data or pointers to old data. If you're not careful,

these pointers could cause memory leaks or just waste memory while the program is running.

Chapter 18: Simple and Complex Geometric
Manipulation with Vertex Shaders

® Download CD Content

For the first real shader technique, you’ll look at how a shader affects the most fundamental aspect of a
vertex—its position. It would be socially and ecologically irresponsible to write a book that covered each
and every possibility of how you can use a shader to manipulate the vertex position. It would also be
difficult to carry that book home from the store. For these reasons, this chapter outlines a couple
geometric effects that illustrate the basics of vertex manipulation. The idea is that you can use these
ideas to build shaders that specifically fit your needs. You'll look at two shaders, a very simple one and

a more complex one.

The first shader scales each vertex along its normal. If this scaling is applied evenly, the effect is akin to
inflating a balloon. The second shader is more complex. It ripples the model with a sine wave. This
general idea can provide a basis for many effects, such as waves in the ocean, ground tremors, or other
warping effects. | also use this chapter to briefly explain how to approximate sine and cosine in a shader.
These functions can be useful for a wide variety of applications, and they also demonstrate the kind of

higher-order math that is possible with a limited number of instructions. Let’s get started.

Expanding Vertices along Their Normals

When a model is scaled with a scaling matrix, the model retains all of its original features, only it gets
bigger or smaller. This first technique is more like inflating a balloon. For simple geometry such as a
sphere, the effect is the same as a scaling matrix. For other objects, the shader creates a puffy effect.

This type of manipulation lends itself well to rendering inflatable objects or trendy winter wear.

It might also be useful when you need to create effects that envelope an object. For instance, many
games feature a shield power that creates a shimmering force field around the players and temporarily
saves them from the surrounding carnage. One way to implement this effect is to render the player once
as usual and then render the player again with this puffed-out effect and the semi-transparent shield

texture.

A side effect to this shader could be seen as a good thing or a bad thing, depending on your needs.

This side effect appears in Figure 18.1, a screenshot from this chapter's sample application.

290

Figure 18.1: Objects scaled along their normals.

When you watch the actual animated application, you see the dumbbell shape expand and contract
along its normals. However, the box shape behaves differently. As it expands along its normals, the
sides separate. This is because there is a discontinuity between the normals of one side and the
normals of another. The top of the box moves up, the bottom moves down, and the sides move to the
side. The whole thing breaks apart like a couple in a bad country-western song. This doesn’t happen
with the dumbbell shape because the vertex normals are interpolated from many faces. It doesn’t help
that objects loaded with the simple D3DX mesh interfaces use triangle lists that do not share vertices. If
this splitting is not the desired behavior, this shader can cause trouble with meshes with sharp corners.
However, in some cases, this splitting might be a desired effect. At the end of this chapter, | talk about
some ways to augment the sample code to create explosion effects with just a few tweaks of this shader.

Before you get into that, look at the shader.

This effect is simple to implement. It has only two new shader instructions in addition to the basic
transformation instructions you've seen so far. The first code snippet shows the shader. This shader is
written with the assumption that the vertex has a position, a normal vector, and a diffuse color. The
shader also assumes that the application set the first four constants to the transformation matrix and a

fifth constant to a scaling factor. The scaling factor is used to determine how much scaling is applied:

vs.l.1

After the obligatory version designation, the vertex normal (which is assumed to be normalized) is

multiplied by the scaling factor in c5.

mul r0, c5, v3

The vector r0 determines how far the vertex is to be moved and in what direction. This vector is then

added to the vertex position to create the new